Domain Decomposition Methods

1. Gauss-Seidel Relaxation
 - an iterative method for solving linear systems
 - a parallel Gauss-Seidel with OpenMP

2. Solving the Heat Equation
 - applying a time stepping method to a PDE
 - domain decomposition

3. Solving the Heat Equation with PETSc
 - The Portable, Extensible Toolkit for Scientific Computation

MCS 572 Lecture 30
Introduction to Supercomputing
Jan Verschelde, 27 March 2023
Domain Decomposition Methods

1. Gauss-Seidel Relaxation
 - an iterative method for solving linear systems
 - a parallel Gauss-Seidel with OpenMP

2. Solving the Heat Equation
 - applying a time stepping method to a PDE
 - domain decomposition

3. Solving the Heat Equation with PETSc
 - The Portable, Extensible Toolkit for Scientific Computation
The fixed point formula for $Ax = b$ where $A = L + D + U$,

- L is strict lower triangular, $L = [a_{i,j}]$, $i > j$, 0 otherwise
- D is diagonal, $D = [a_{i,j}]$, $i = j$, 0 otherwise
- U is strict upper triangular, $U = [a_{i,j}]$, $i < j$, 0 otherwise

$$Ax = b \iff (L + D + U)x = b$$
$$\iff (L + D)x + Ux = b$$
$$\iff (L + D)x = b - Ux$$

Observe that $L + D$ is lower triangular.
We apply forward substitution in each step.
We want to solve $Ax = b$ for $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, for very large n.

Writing the method of Jacobi componentwise:

$$x_i^{(k+1)} := x_i^{(k)} + \frac{1}{a_{i,i}} \left(b_i - \sum_{j=1}^{n} a_{i,j} x_j^{(k)} \right), \quad i = 1, 2, \ldots, n$$

we observe that we can already use $x_j^{(k+1)}$ for $j < i$.

This leads to the following formulas

$$x_i^{(k+1)} := x_i^{(k)} + \frac{1}{a_{i,i}} \left(b_i - \sum_{j=1}^{i-1} a_{i,j} x_j^{(k+1)} - \sum_{j=i}^{n} a_{i,j} x_j^{(k)} \right), \quad i = 1, 2, \ldots, n.$$
the Gauss-Seidel method

Writing the formulas as an algorithm:

Input: $A, b, x^{(0)}, \epsilon, N$.
Output: $x^{(k)}$, k is the number of iterations done.

for k from 1 to N do
 for i from 1 to n do
 $\Delta x_i := b_i$
 for j from 1 to $i - 1$ do
 $\Delta x_i := \Delta x_i - a_{i,j} x_j^{(k+1)}$
 for j from i to n do
 $\Delta x_i := \Delta x_i - a_{i,j} x_j^{(k)}$
 $\Delta x_i := \Delta x_i / a_{i,i}$
 $x_i^{(k+1)} := x_i^{(k)} + \Delta x_i$
 exit when ($||\Delta x|| \leq \epsilon$)
loop fusing

The method of Gauss-Seidel is an *in-place method*: old values are overwritten by new ones as soon as computed.

The two loops in

\[
\begin{align*}
 \text{for } j \text{ from } 1 \text{ to } i - 1 \text{ do} \\
 \Delta x_i &:= \Delta x_i - a_{i,j} x_j^{(k+1)} \\
 \text{for } j \text{ from } i \text{ to } n \text{ do} \\
 \Delta x_i &:= \Delta x_i - a_{i,j} x_j^{(k)}
\end{align*}
\]

are fused into one loop:

\[
\begin{align*}
 \text{for } j \text{ from } 1 \text{ to } n \text{ do} \\
 \Delta x_i &:= \Delta x_i - a_{i,j} x_j
\end{align*}
\]
C code for the Gauss-Seidel method

void run_gauss_seidel_method
 (int n, double **A, double *b,
 double epsilon, int maxit,
 int *numit, double *x)

/*
 * Runs the method of Gauss-Seidel for A*x = b.
 *
 * ON ENTRY :
 * n the dimension of the system;
 * A an n-by-n matrix A[i][i] /= 0;
 * b an n-dimensional vector;
 * epsilon accuracy requirement;
 * maxit maximal number of iterations;
 * x start vector for the iteration.
 *
 * ON RETURN :
 * numit number of iterations used;
 * x approximate solution to A*x = b. */
```c
double *dx = (double*) calloc(n,sizeof(double));
int i, j, k;
for(k=0; k<maxit; k++)
{
    double sum = 0.0;
    for(i=0; i<n; i++)
    {
        dx[i] = b[i];
        for(j=0; j<n; j++)
            dx[i] -= A[i][j]*x[j];
        dx[i] /= A[i][i]; x[i] += dx[i];
        sum += (dx[i] >= 0.0) ? dx[i] : -dx[i];
    }
    printf("%4d : %.3e\n",k,sum);
    if(sum <= epsilon) break;
}
*numit = k+1; free(dx);
```
the test system

For the dimension n, we consider the diagonally dominant system:

$$
\begin{bmatrix}
 n+1 & 1 & \cdots & 1 \\
 1 & n+1 & \cdots & 1 \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & 1 & \cdots & n+1 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{bmatrix}
=
\begin{bmatrix}
 2n \\
 2n \\
 \vdots \\
 2n \\
\end{bmatrix}.
$$

The exact solution is x: for $i = 1, 2, \ldots, n$, $x_i = 1$.

We start the iterative method at $x^{(0)} = 0$.

Values for the parameters:

- $\epsilon = 10^{-4}$ as the tolerance on the accuracy; and
- $N = 2n^2$ for the maximum number of iterations.
running on the test system

$ time ./gauss_seidel 1000
 0 : 1.264e+03
 1 : 3.831e+02
 2 : 6.379e+01
 3 : 1.394e+01
 4 : 3.109e+00
 5 : 5.800e-01
 6 : 1.524e-01
 7 : 2.521e-02
 8 : 7.344e-03
 9 : 1.146e-03
 10 : 3.465e-04
 11 : 5.419e-05

computed 12 iterations <---- 8407 with Jacobi
error : 1.477e-05

real 0m0.069s <------ 0m42.411s
user 0m0.063s <------ 0m42.377s
sys 0m0.005s <------ 0m0.028s
Domain Decomposition Methods

1. Gauss-Seidel Relaxation
 - an iterative method for solving linear systems
 - a parallel Gauss-Seidel with OpenMP

2. Solving the Heat Equation
 - applying a time stepping method to a PDE
 - domain decomposition

3. Solving the Heat Equation with PETSc
 - The Portable, Extensible Toolkit for Scientific Computation
The method of Jacobi is suitable for strip partitioning of the (dense) matrix and in a parallel distributed memory implementation, every processor can keep its own portion of the solution vector \mathbf{x}.

The Gauss-Seidel method makes the new x_i directly available which leads to communication overhead on distributed memory computers.

In a parallel shared memory implementation, consider:

1. Threads compute inner products of matrix rows with \mathbf{x}.
2. Each Δx_i is updated in a critical section.
many threads compute one inner product

For example, three threads, assuming n is divisible by 3, compute:

$$
\begin{bmatrix}
a_{i,1} \cdots a_{i,n/3} & a_{i,n/3+1} \cdots a_{i,2n/3} & a_{i,2n/3+1} \cdots a_{i,n}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_{n/3} \\
x_{n/3+1} \\
\vdots \\
x_{2n/3} \\
x_{2n/3+1} \\
\vdots \\
x_n
\end{bmatrix}
$$

Each thread has its own variable to accumulate its portion of the inner product.
using \(p \) threads

```c
void run_gauss_seidel_method
( int p, int n, double **A, double *b,
  double epsilon, int maxit,
  int *numit, double *x )
{
  double *dx;
  dx = (double*) calloc(n,sizeof(double));
  int i,j,k,id,jstart,jstop;

  int dnp = n/p;
  double dx_i;

  for(k=0; k<maxit; k++)
  {
    double sum = 0.0;
    for(i=0; i<n; i++)
    {
      
```
Threads collaborate at making one inner product.

```c
dx[i] = b[i];
#pragma omp parallel \
  shared(A, x) \
  private(id, j, jstart, jstop, dxi)
{
  id = omp_get_thread_num();
  jstart = id*dnp;
  jstop = jstart + dnp;
  dxi = 0.0;
  for(j=jstart; j<jstop; j++)
    dxi += A[i][j]*x[j];
#pragma omp critical
  dx[i] -= dxi;
}
```
The update instructions

\[
dx[i] /= A[i][i];
\]
\[
x[i] += dx[i];
\]
\[
sum += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);
\]

are executed after each parallel region.

This ensures the synchronization and the execution of the stop test:

\[
\text{if}(\text{sum} \leq \epsilon) \text{ break;}
\]
$ time ./gauss_seidel_omp n p

<table>
<thead>
<tr>
<th>p</th>
<th>n</th>
<th>real</th>
<th>user</th>
<th>sys</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,000</td>
<td>7.165s</td>
<td>6.921s</td>
<td>0.242s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20,000</td>
<td>28.978s</td>
<td>27.914s</td>
<td>1.060s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>1m 6.491s</td>
<td>1m 4.139s</td>
<td>2.341s</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10,000</td>
<td>4.243s</td>
<td>7.621s</td>
<td>0.310s</td>
<td>1.689</td>
</tr>
<tr>
<td></td>
<td>20,000</td>
<td>16.325s</td>
<td>29.556s</td>
<td>1.066s</td>
<td>1.775</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>36.847s</td>
<td>1m 6.831s</td>
<td>2.324s</td>
<td>1.805</td>
</tr>
<tr>
<td>5</td>
<td>10,000</td>
<td>2.415s</td>
<td>9.440s</td>
<td>0.420s</td>
<td>2.967</td>
</tr>
<tr>
<td></td>
<td>20,000</td>
<td>8.403s</td>
<td>32.730s</td>
<td>1.218s</td>
<td>3.449</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>18.240s</td>
<td>1m11.031s</td>
<td>2.327s</td>
<td>3.645</td>
</tr>
<tr>
<td>10</td>
<td>10,000</td>
<td>2.173s</td>
<td>16.241s</td>
<td>0.501s</td>
<td>3.297</td>
</tr>
<tr>
<td></td>
<td>20,000</td>
<td>6.524s</td>
<td>45.629s</td>
<td>1.521s</td>
<td>4.442</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td>13.273s</td>
<td>1m29.687s</td>
<td>2.849s</td>
<td>5.010</td>
</tr>
</tbody>
</table>
1. Gauss-Seidel Relaxation
 - an iterative method for solving linear systems
 - a parallel Gauss-Seidel with OpenMP

2. Solving the Heat Equation
 - applying a time stepping method to a PDE
 - domain decomposition

3. Solving the Heat Equation with PETSc
 - The Portable, Extensible Toolkit for Scientific Computation
The heat or diffusion equation

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial t} \]

models the temperature distribution \(u(x, y, t) \) evolving in time \(t \) for \((x, y) \) in some domain.

Related Partial Differential Equations (PDEs) are

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{and} \quad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y), \]

respectively called the Laplace and Poisson equations.
initial and boundary conditions

For $t > 0$, we consider the domain of

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial t}$$

to be $[0, 1] \times [0, 1]$, so $0 \leq x \leq 1$ and $0 \leq y \leq 1$.

For numerical computations, we must specify this problem with

- one initial condition: $u(x, y, 0) = f(x, y)$; and
- four boundary conditions:
 1. $u(0, y, t) = g_1(y)$,
 2. $u(1, y, t) = g_2(y)$,
 3. $u(x, 0, t) = g_3(x)$, and
 4. $u(x, 1, t) = g_4(x)$.

It suffices to know f, g_1, g_2, g_3, g_4 at the grid points.
discretization of the derivatives

At a point \((x_0, y_0, t_0)\), we have

\[
\frac{\partial u}{\partial x}(x_0, y_0, t_0) = \lim_{h \to 0} \frac{u(x_0 + h, y_0, t_0) - u(x_0, y_0, h)}{h}
\]

so for positive \(h \approx 0\), \(u_x(x_0, y_0, t_0) \approx \frac{\partial u}{\partial x}(x_0, y_0, t_0)\).

For the second derivative we use the finite difference \(u_{xx}(x_0, y_0, t_0)\)

\[
= \frac{1}{h} \left(\frac{u(x_0 + h, y_0, t_0) - u(x_0, y_0, t_0)}{h} - \frac{u(x_0, y_0, t_0) - u(x_0 - h, y_0, t_0)}{h} \right)
= \frac{u(x_0 + h, y_0, t_0) - 2u(x_0, y_0, t_0) + u(x_0 - h, y_0, t_0)}{h^2}.
\]
time stepping

\[
\begin{align*}
 u_t(x_0, y_0, t_0) &= \frac{u(x_0, y_0, t_0 + h) - u(x_0, y_0, t_0)}{h} \\
 u_{xx}(x_0, y_0, t_0) &= \frac{u(x_0 + h, y_0, t_0) - 2u(x_0, y_0, t_0) + u(x_0 - h, y_0, t_0)}{h^2} \\
 u_{yy}(x_0, y_0, t_0) &= \frac{u(x_0, y_0 + h, t_0) - 2u(x_0, y_0, t_0) + u(x_0, y_0 - h, t_0)}{h^2}
\end{align*}
\]

Then the equation \(\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \) becomes

\[
\begin{align*}
 u(x_0, y_0, t_0 + h) &= u(x_0, y_0, t_0) \\
 &\quad + h \left[u(x_0 + h, y_0, t_0) + u(x_0 - h, y_0, t_0) \\
 &\quad + u(x_0, y_0 + h, t_0) + u(x_0, y_0 - h, t_0) - 4u(x_0, y_0, t_0) \right]
\end{align*}
\]

Locally, the error of this approximation is \(O(h^2) \).
synchronous iterations on a grid

For \((x, y) \in [0, 1] \times [0, 1]\), the division of \([0, 1]\) in \(n\) equal subintervals, with \(h = 1/n\), leads to a grid \((x_i = ih, y_j = jh)\), for \(i = 0, 1, \ldots, n\) and \(j = 0, 1, \ldots, n\).

For \(t\), we use the same step size \(h\): \(t_k = kh\).

Denote \(u^{(k)}_{i,j} = u(x_i, y_j, t_k)\), then

\[
u^{(k+1)}_{i,j} = u^{(k)}_{i,j} + h \left[u^{(k)}_{i+1,j} + u^{(k)}_{i-1,j} + u^{(k)}_{i,j+1} + u^{(k)}_{i,j-1} - 4u^{(k)}_{i,j} \right].
\]

In every step, we update \(u_{i,j}\) based on \(u_{i-1,j}, u_{i+1,j}, u_{i,j-1}\), and \(u_{i,j+1}\).
iterative solving of linear systems

The formulas lead directly to the following algorithm:

for $k = 1, 2, \ldots, N$ do
 for $i = 0, 1, \ldots, n$ do
 for $j = 0, 1, \ldots, n$ do
 $u_{i,j}^{(k+1)} = u_{i,j}^{(k)} + h \left[u_{i+1,j}^{(k)} + u_{i-1,j}^{(k)} + u_{i,j+1}^{(k)} + u_{i,j-1}^{(k)} - 4u_{i,j}^{(k)} \right].$

The above loops are similar to Jacobi’s method.

Using the most recent values, as in the Gauss-Seidel method, leads to faster convergence.

For this problem, there is a specific ordering that is better suited.
red-black ordering

We divide the grid in red and black points:

```
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
  u u u u u u u u u u u u
```

The computation is organized in two phases:

1. update all black points simultaneously; and then
2. update all red points simultaneously.
Domain Decomposition Methods

1. Gauss-Seidel Relaxation
 - an iterative method for solving linear systems
 - a parallel Gauss-Seidel with OpenMP

2. Solving the Heat Equation
 - applying a time stepping method to a PDE
 - domain decomposition

3. Solving the Heat Equation with PETSc
 - The Portable, Extensible Toolkit for Scientific Computation
domain decomposition

We can decompose a domain in strips, but then there are n/p boundaries that must be shared. To reduce the overlapping, we partition in squares:

Then the boundary elements are proportional to n/\sqrt{p}.
comparing communication costs

In a square partition, every square has 4 edges, whereas a strip has only 2 edges. For the communication cost, we multiply by 2 because for every send there is a receive.

Comparing the communication cost for a strip partitioning

\[t_{\text{comm}}^{\text{strip}} = 4 \left(t_{\text{startup}} + nt_{\text{data}} \right) \]

to the communication cost for a square partitioning (for \(p \geq 9 \)):

\[t_{\text{comm}}^{\text{square}} = 8 \left(t_{\text{startup}} + \frac{n}{\sqrt{p}} t_{\text{data}} \right) . \]

A strip partition is best if the startup time is large and if we have only very few processors.

If the startup time is low, and for \(p \geq 4 \), a square partition starts to look better.
some numerical considerations

The discretization of the heat equation is the simplest one.

- The explicit forward difference method is conditionally stable: in order for the method to converge, the step size in time depends on the step size in space.

- Methods that are unconditionally stable are implicit and require the solving of a linear system in each time step.
Domain Decomposition Methods

1. Gauss-Seidel Relaxation
 - an iterative method for solving linear systems
 - a parallel Gauss-Seidel with OpenMP

2. Solving the Heat Equation
 - applying a time stepping method to a PDE
 - domain decomposition

3. Solving the Heat Equation with PETSc
 - The Portable, Extensible Toolkit for Scientific Computation
PETSc

PETSc = The Portable, Extensible Toolkit for Scientific Computation.

- PETSc provides data structures and routines for large-scale application codes on parallel (and serial) computers, using MPI.
- Support for Fortran, C, C++, Python, and MATLAB (serial).
- Part of the ACTS (Advanced ComputTational Software) Collection.
suggested reading

- Visit https://petsc.org and browse the documentation.

Summary + Exercises

We covered §6.3.2 in the book of Wilkinson and Allen, see also §11.4.

Exercises:

1. Take the running times of the OpenMP version of the method of Gauss-Seidel and compute the efficiency for each of the 9 cases. What can you conclude about the scalability?

2. Use MPI to write a parallel version of the method of Gauss-Seidel. Compare the speedups with the OpenMP version.

3. Run an example of the PETSc tutorials collection with an increasing number of processes to investigate the speedup.

4. Cellular automata (e.g.: Conway’s game of life) are synchronized computations. Discuss a parallel implementation of Conway’s game of life and illustrate your discussion with a computation.