
Tensor Cores

1 Tensor Cores
introduction
Volta, Ampere, Hopper architectures
warp matrix functions

2 Simple Matrix Multiplication
from an NVIDIA technical blog
demonstration code
runs on volta and ampere

MCS 572 Lecture 32
Introduction to Supercomputing

Jan Verschelde, 8 November 2024

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 1 / 29

Tensor Cores

1 Tensor Cores
introduction
Volta, Ampere, Hopper architectures
warp matrix functions

2 Simple Matrix Multiplication
from an NVIDIA technical blog
demonstration code
runs on volta and ampere

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 2 / 29

introduction

Training deep neural networks is computationally expensive.

While targeted to General Matrix Multiply (GEMM),
convolution operations can be reduced to GEMM.

The tensor core peak performance in double precision increased
from 19.5 on Ampere A100 to 134 TFLOPS on Hopper H100.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 3 / 29

high throughput computing

The Volta V100 gives a 12-fold increase in throughput,
compared to the Pascal P100.

Definition (throughput)
Throughput measures how much information a system can process in
a given amount of time.

High Performance Computing (HPC) measures FLOPS.

High Throughput Computing (HTC) measures the number of jobs
that can be completed over a long period.

While related, HPC is concerned with speed,
HTC is also concerned with robustness and reliability.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 4 / 29

Tensor Cores

1 Tensor Cores
introduction
Volta, Ampere, Hopper architectures
warp matrix functions

2 Simple Matrix Multiplication
from an NVIDIA technical blog
demonstration code
runs on volta and ampere

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 5 / 29

the Volta Streaming Multiprocessor

Each Streaming Multiprocessor (SM)
has 8 Tensor Cores.
The V100 has 80 SMs
⇒ 640 tensor cores in total.

The V100 offers 125 tensor TFLOPS
of mixed precision.

Tensor cores accelerate convolutions
and matrix operations.

Used to accelerate HPC, data center,
and machine learning applications.

From the NVIDIA Volta Architecture white paper.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 6 / 29

V100 versus A100
from the NVIDIA white paper on Ampere architecture

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 7 / 29

A100 versus H100
from the NVIDIA white paper on Hopper architecture

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 8 / 29

Tensor Cores

1 Tensor Cores
introduction
Volta, Ampere, Hopper architectures
warp matrix functions

2 Simple Matrix Multiplication
from an NVIDIA technical blog
demonstration code
runs on volta and ampere

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 9 / 29

mixed precision matrix operations
Vishal Mehta, SC 2019 getting started with tensor cores in HPC

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 10 / 29

from the programming guide

About Warp Matrix Functions:
For compute capability 7.0 or higher.
Double precision is supported for compute capability ≥ 8.0.

All threads in a warp must execute the same code.
Code execuction is likely to hang otherwise.

A fragment is a templated type with template parameters
describing which matrix the fragment holds (A, B or accumulator),
the shape of the overall WMMA operation, the data type and,
for A and B matrices, whether the data is row or column major.

Source: Release 12.1 of the CUDA C++ Programming Guide,
section 10.2.4, 28 February 2023.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 11 / 29

running an example
On a Volta computer, in the folder

/usr/local/cuda/samples/0_Simple/cudaTensorCoreGemm

$./cudaTensorCoreGemm
Initializing...
GPU Device 0: "Quadro GV100" with compute capability 7.0

M: 4096 (16 x 256)
N: 4096 (16 x 256)
K: 4096 (16 x 256)
Preparing data for GPU...
Required shared memory size: 64 Kb
Computing... using high performance kernel compute_gemm
Time: 2.768896 ms
TFLOPS: 49.64
$

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 12 / 29

running the same example on the A100
On ampere, in the folder cudaTensorCoreGemm of

/usr/local/cuda/samples/Samples/3_CUDA_Features

$./cudaTensorCoreGemm
Initializing...
GPU Device 0: "Ampere" with compute capability 8.0

M: 4096 (16 x 256)
N: 4096 (16 x 256)
K: 4096 (16 x 256)
Preparing data for GPU...
Required shared memory size: 64 Kb
Computing... using high performance kernel compute_gemm
Time: 1.756160 ms
TFLOPS: 78.26
$

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 13 / 29

a short explanation

The Warp Matrix Multipy and Accumulate (WMMA) computes

D = αAB + βC

where
matrix A is M-by-K row major,
matrix B is K-by-N column major, and
matrices C and D are M-by-N.

Each Cooperative Thread Array (CTA)
consists of 8 warps and
computes one 128-by-128 tile,
using shared memory for the matrix C.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 14 / 29

Tensor Cores

1 Tensor Cores
introduction
Volta, Ampere, Hopper architectures
warp matrix functions

2 Simple Matrix Multiplication
from an NVIDIA technical blog
demonstration code
runs on volta and ampere

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 15 / 29

demonstration code

Based on a 2017 NVIDIA Technical Blog,
by Jeremy Appleyard and Scott Yokim,
available from https://developer.nvidia.com/blog
on Programming Tensor Cores in CUDA 9.

The demonstration code is available on github via
https://github.com/NVIDIA-developer-blog/code-samples
posted with a Makefile.

Show the use of the WMMA (Warp Matrix Multiply Accumulate) API
to perform a matrix multiplication.

For performance, use the cudaTensorCoreGemm
in the CUDA Toolkit.
For highest performance, use cuBLAS.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 16 / 29

steps in the code

There are four steps in the demonstration code:

1 Use headers and namespaces.
2 Declarations and initialization:

A simple warp is responsible for a single 16-by-16 section
of the output matrix. Tiling happens with a 2D grid:

int warpM = (blockIdx.x*blockDim.x+threadIdx.x)/ warpSize;
int warpN = (blockIdx.y*blockDim.y+threadIdx.y);

3 The inner loop performs the matrix multiplication.
4 Finishing up: store the accumulated data to memory.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 17 / 29

Tensor Cores

1 Tensor Cores
introduction
Volta, Ampere, Hopper architectures
warp matrix functions

2 Simple Matrix Multiplication
from an NVIDIA technical blog
demonstration code
runs on volta and ampere

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 18 / 29

fragments

A fragment is a templated type with parameters as follows:
1 which matrix the fragment holds, A, B, or accumulator;
2 the shape of the overall WMMA operation;
3 the data type;
4 for A and B matrices, whether the data is row or column major.

The parameters are specified at the declaration of the fragment.

Accumulator fragments are filled with zeros at initialization.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 19 / 29

declaration and initialization
Declaration of the fragments:

wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K,
half, wmma::col_major> a_frag;

wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K,
half, wmma::col_major> b_frag;

wmma::fragment<wmma::accumulator,
WMMA_M, WMMA_N, WMMA_K, float> acc_frag;

wmma::fragment<wmma::accumulator,
WMMA_M, WMMA_N, WMMA_K, float> c_frag;

Initialization of the accumulator fragment:

wmma::fill_fragment(acc_frag, 0.0f);

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 20 / 29

the inner loop

One tile of the output matrix is computed by one warp.

The loop runs over the rows of A and columns of B,
to produce an m-by-n output tile.

Data is loaded from global memory into a fragment.

If a tile is discontinous in memory,
the stride must be provided to the load function.

The Matrix Multiply Accumulate (MMA) accumulates in place,
so both first and last arguments are the accumulator fragment
previously initialized to zero.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 21 / 29

headers and declarations

#include <mma.h>
using namespace nvcuda;

// Must be multiples of 16 for wmma code to work
#define MATRIX_M 16384
#define MATRIX_N 16384
#define MATRIX_K 16384

// The only dimensions currently supported by WMMA
const int WMMA_M = 16;
const int WMMA_N = 16;
const int WMMA_K = 16;

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 22 / 29

start of the kernel

// Performs an MxNxK GEMM (C=alpha*A*B + beta*C)
// assuming:
// 1) Matrices are packed in memory.
// 2) M, N and K are multiples of 16.
// 3) Neither A nor B are transposed.

__global__ void wmma_example
(half *a, half *b, float *c,
int M, int N, int K, float alpha, float beta)

{
// Leading dimensions.
int lda = M;
int ldb = K;
int ldc = M;

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 23 / 29

loop over k
for (int i = 0; i < K; i += WMMA_K)
{

int aRow = warpM * WMMA_M;
int aCol = i;

int bRow = i;
int bCol = warpN * WMMA_N;

// Bounds checking
if (aRow < M && aCol < K && bRow < K && bCol < N)
{

// Load the inputs
wmma::load_matrix_sync(a_frag, a+aRow+aCol*lda, lda);
wmma::load_matrix_sync(b_frag, b+bRow+bCol*ldb, ldb);

// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);

}
}

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 24 / 29

scale by beta and alpha
The code below loads the current value of c,
scales it by beta and adds this to our result scaled by alpha.

int cRow = warpM * WMMA_M;
int cCol = warpN * WMMA_N;

if (cRow < M && cCol < N)
{

wmma::load_matrix_sync(c_frag, c + cRow + cCol * ldc,
ldc, wmma::mem_col_major);

#pragma unroll
for(int i=0; i < c_frag.num_elements; i++)
{

c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
}
// Store the output
wmma::store_matrix_sync(c + cRow + cCol * ldc, c_frag,

ldc, wmma::mem_col_major);
}

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 25 / 29

Tensor Cores

1 Tensor Cores
introduction
Volta, Ampere, Hopper architectures
warp matrix functions

2 Simple Matrix Multiplication
from an NVIDIA technical blog
demonstration code
runs on volta and ampere

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 26 / 29

runs on volta and ampere

$./TCGemm

M = 16384, N = 16384, K = 16384.
alpha = 2.000000, beta = 2.000000

Running with wmma...
Running with cuBLAS...

Checking results...
Results verified: cublas and WMMA agree.

On the Volta V100: wmma took 631.051270ms
cublas took 99.577888ms

On the Ampere A100: wmma took 501.762054ms
cublas took 38.711296ms

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 27 / 29

some suggested reading

NVIDIA. CUDA C++ Programming Guide.
Da Yan, Wei Wang, Xiaowen Chu: Demystifying Tensor Cores
to Optimize Half-Precision Matrix Multiply.
In the Proceedings of the 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 634–643.
Thomas Faingnaert, Tim Besard, and Bjorn De Sutter: Flexible
Performant GEMM Kernels on GPUs. IEEE Transactions on
Parallel and Distributed Systems 33:(9): 2230–2248, 2022.
Massimiliano Fasi, Nicholas J. Higham, Florent Lopez,
Theo Mary, and Mantas Mikaitis:
Matrix Multiplication in Multiword Arithmetic: Error Analysis
and Application to GPU Tensor Cores.
SIAM Journal on Scientific Computing 45(1): C1–C19, 2023.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 28 / 29

exercises

1 Let x = (x0, x1, x2, x3, x4) and y = (y0, y1, y2, y3, y4) be two vectors
and consider its convolution x0y4 + x1y3 + x2y2 + x3y1 + x4y0.
Demonstrate how to rewrite convolutions as matrix products.

2 Install the Julia package GemmKernels.jl.
Read the paper by Faingnaert et al. and run an example of matrix
multiplication with the package.

Introduction to Supercomputing (MCS 572) Tensor Cores L-32 8 November 2024 29 / 29

	Tensor Cores
	introduction
	Volta, Ampere, Hopper architectures
	warp matrix functions

	Simple Matrix Multiplication
	from an NVIDIA technical blog
	demonstration code
	runs on volta and ampere

