COURSE OUTLINE – subject to changes:

L-1 Mon 9 Jan welcome to mcs 572 – supercomputing – measuring performance
L-2 Wed 11 Jan scalability – types of parallel computing
L-3 Fri 13 Jan high level parallel processing
 Mon 16 Jan Martin Luther King, Jr., Day. No classes.

distributed memory parallel computing
L-4 Wed 18 Jan basics of Message Passing (MPI) – broadcasting data
L-5 Fri 20 Jan using MPI to write parallel programs
L-6 Mon 23 Jan pleasingly parallel programs – Monte Carlo simulations
L-7 Wed 25 Jan static and dynamic task assignments – load balancing
L-8 Fri 27 Jan hands on supercomputing
L-9 Mon 30 Jan partitioning and divide-and-conquer strategies

shared memory parallel computing
L-10 Wed 1 Feb shared memory parallelism – an introduction to OpenMP
L-11 Fri 3 Feb the work crew model with Julia, OpenMP, and pthreads
L-12 Mon 6 Feb tasking with OpenMP – Bernstein’s conditions – task dependence
L-13 Wed 8 Feb tasking with Julia – parallel recursive functions
L-14 Fri 10 Feb evaluating performance – metrics, task graph, isoefficiency, roofline
L-15 Mon 13 Feb work stealing – threading building blocks

acceleration with Graphics Processing Units
L-16 Wed 15 Feb a massively parallel processor: the GPU
L-17 Fri 17 Feb evolution of graphics pipelines
L-18 Mon 20 Feb programming GPUs, OpenCL, CUDA, PyCUDA
L-19 Wed 22 Feb introduction to CUDA
L-20 Fri 24 Feb data parallelism and matrix multiplication
L-21 Mon 27 Feb device memories and matrix-matrix multiplication
L-22 Wed 1 Mar thread organization and matrix multiplication
L-23 Fri 3 Mar review of the first 22 lectures
L-24 Mon 6 Mar midterm exam

pipelining and synchronized computations
L-25 Wed 8 Mar pipelined computations
L-26 Fri 10 Mar pipelined sorting and sieving
L-27 Mon 13 Mar solving triangular linear systems
L-28 Wed 15 Mar synchronization with linear, tree, and butterfly barriers
L-29 Fri 17 Mar parallel iterative methods to solve linear systems
L-30 Mon 27 Mar domain decomposition methods
L-31 Wed 29 Mar warps and reduction algorithms
L-32 Fri 31 Mar memory coalescing techniques
L-33 Mon 3 Apr performance considerations; NVIDIA tensor cores

applications
L-34 Wed 5 Apr parallel FFT and sorting
L-35 Fri 7 Apr parallel Gaussian elimination
L-36 Mon 10 Apr GPU accelerated QR
L-37 Wed 12 Apr case study: advanced MRI reconstruction
L-38 Fri 14 Apr disk parallelism and cloud computing
L-39 Mon 17 Apr concurrent kernels and multiple GPUs
L-40 Wed 19 Apr GPU accelerated Newton’s method for Taylor series
L-41 Fri 21 Apr final review
L-42 Mon 24 Apr final project presentations
L-43 Wed 26 Apr final project presentations
L-44 Fri 28 Apr final project presentations

Wednesday 3 May, final exam, 1pm - 3pm, 303 Addams Hall.