- 1 [Conditioning and Multiple Double Arithmetic](#page-1-0)
	- **•** [ill conditioned matrices](#page-1-0)
	- [quad double arithmetic](#page-4-0)
- 2 [On a Parallel Shared Memory Computer](#page-10-0)
	- \bullet [rewriting the formulas](#page-10-0)
	- [a parallel solver with OpenMP](#page-14-0)
- [Accelerated Back Substitution](#page-22-0)
	- [partitioning an upper triangular system in tiles](#page-22-0)
	- [experimental results](#page-27-0)

MCS 572 Lecture 27 Introduction to Supercomputing Jan Verschelde, 28 October 2024

1 [Conditioning and Multiple Double Arithmetic](#page-1-0) \bullet [ill conditioned matrices](#page-1-0)

- [quad double arithmetic](#page-4-0)
- 2 [On a Parallel Shared Memory Computer](#page-10-0) \bullet [rewriting the formulas](#page-10-0) [a parallel solver with OpenMP](#page-14-0) \bullet

[Accelerated Back Substitution](#page-22-0) • [partitioning an upper triangular system in tiles](#page-22-0) • [experimental results](#page-27-0)

ill conditioned matrices

Consider the 4-by-4 lower triangular matrix

$$
L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -2 & -2 & 1 & 0 \\ -2 & -2 & -2 & 1 \end{bmatrix}.
$$

What we know from numerical analysis:

- **1** The condition number of a matrix magnifies roundoff errors.
- 2 The hardware double precision is 2⁻⁵² \approx 2.2 \times 10⁻¹⁶.
- \bullet We get no accuracy from condition numbers larger than 10¹⁶.

an experiment in an interactive Julia session

```
julia> using LinearAlgebra
```

```
julia> A = ones(32, 32);
```
 j ulia> D = Diagonal(A);

```
julia> L = LowerTriangular(A);
```

```
julia> LmD = L - D:
```

```
iulia> L2 = D - 2*LmD;
```

```
julia> cond(L2)
2.41631630569077e16
```
The condition number is estimated at 2.4 \times 10¹⁶.

KON KAN KEN KEN EL PIRO

1 [Conditioning and Multiple Double Arithmetic](#page-1-0) • [ill conditioned matrices](#page-1-0)

• [quad double arithmetic](#page-4-0)

2 [On a Parallel Shared Memory Computer](#page-10-0) \bullet [rewriting the formulas](#page-10-0) [a parallel solver with OpenMP](#page-14-0) \bullet

[Accelerated Back Substitution](#page-22-0) **•** [partitioning an upper triangular system in tiles](#page-22-0) \bullet [experimental results](#page-27-0)

quad double arithmetic

A quad double is an unevaluated sum of 4 doubles, improves working precision from 2.2 \times 10 $^{-16}$ to 2.4 \times 10 $^{-63}.$

Y. Hida, X.S. Li, and D.H. Bailey: **Algorithms for quad-double precision floating point arithmetic.** In *15th IEEE Symposium on Computer Arithmetic* pages 155–162. IEEE, 2001. Software at http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.17.tar.gz.

A quad double builds on double double, some features:

- **•** The least significant part of a double double can be interpreted as a compensation for the roundoff error.
- **Predictable overhead: working with** double double is of the same cost as working with complex numbers.

 Ω

イロト イ押 トイラト イラト・ラー

operator overloading in C++

```
#include <iostream>
#include <iomanip>
#include <qd/qd_real.h>
using namespace std;
int main ( void )
{
   qd real q("2");
   cout << setprecision(64) << q << endl;
   for(int i=0; i<8; i++)
   {
      qd_real dq = (q * q - 2.0) / (2.0 * q);
      q = q - dq; cout \langle q q \rangle endl;
   }
   cout << scientific << setprecision(4);
   cout \ll "residual : " \ll q*q - 2.0 \ll endl;
   return 0;
```
}

compiling with a makefile

On pascal, the makefile contains the entry:

```
QD_ROOT=/usr/local/qd-2.3.17
QD_LIB=/usr/local/lib
qd4sqrt2:
        g++ -I$(QD_ROOT)/include qd4sqrt2.cpp \
            $ (QD LIB) / libqd.a \ \-o qd4sqrt2
```
Compiling at the command prompt \$:

```
$ make qd4sqrt2
q++ -I/usr/local/qd-2.3.17/include qd4sqrt2.cpp \
            /usr/local/lib/libqd.a \
            -o qd4sqrt2
```
K ロ > K 個 > K 로 > K 로 > → 로 → K Q Q Q

running the code

\$./qd4sqrt2

```
2.0000000000000000000000000000000000000000000000000000000000000000e+00
1.5000000000000000000000000000000000000000000000000000000000000000e+00
1.4166666666666666666666666666666666666666666666666666666666666667e+00
1.4142156862745098039215686274509803921568627450980392156862745098e+00
1.4142135623746899106262955788901349101165596221157440445849050192e+00
1.4142135623730950488016896235025302436149819257761974284982894987e+00
1.4142135623730950488016887242096980785696718753772340015610131332e+00
1.4142135623730950488016887242096980785696718753769480731766797380e+00
1.4142135623730950488016887242096980785696718753769480731766797380e+00
residual : 0.0000e+00
$
```
General multiple double arithmetic is available:

M. Joldes, J.-M. Muller, V. Popescu, W. Tucker. **CAMPARY: Cuda Multiple Precision Arithmetic Library and Applications.** In *Mathematical Software – ICMS 2016, the 5th International Conference on Mathematical Software*, pages 232–240, Springer-Verlag, 2016.

E

 Ω

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

Numerical Conditioning and Stability

The condition number of a random number is known to grow exponentionally in the dimension, *almost surely*, as demonstrated in

D. Viswanath and L. N. Trefethen. **Condition numbers of random triangular matrices.** *SIAM J. Matrix Anal. Appl.*, 19(2):564–581, 1998.

The numerical stability of various parallel algorithms to solve triangular systems is discussed in

N. J. Higham.

Stability of parallel triangular system solvers. *SIAM J. Sci. Comput.*, 16(2):400–413, 1995.

1 [Conditioning and Multiple Double Arithmetic](#page-1-0)

- [ill conditioned matrices](#page-1-0)
- [quad double arithmetic](#page-4-0)

2 [On a Parallel Shared Memory Computer](#page-10-0)

- \bullet [rewriting the formulas](#page-10-0)
- [a parallel solver with OpenMP](#page-14-0) \bullet

[Accelerated Back Substitution](#page-22-0) **•** [partitioning an upper triangular system in tiles](#page-22-0)

• [experimental results](#page-27-0)

formulas for forward substitution

Expanding the matrix-vector product Ly in $Ly = b$ leads to

$$
\begin{cases}\n y_1 &= b_1 \\
 \ell_{2,1}y_1 + y_2 &= b_2 \\
 \ell_{3,1}y_1 + \ell_{3,2}y_2 + y_3 &= b_3 \\
 \vdots \\
 \ell_{n,1}y_1 + \ell_{n,2}y_2 + \ell_{n,3}y_3 + \cdots + \ell_{n,n-1}y_{n-1} + y_n &= b_n\n\end{cases}
$$

and solving for the diagonal elements gives

$$
y_1 = b_1
$$

\n
$$
y_2 = b_2 - \ell_{2,1} y_1
$$

\n
$$
y_3 = b_3 - \ell_{3,1} y_1 - \ell_{3,2} y_2
$$

\n
$$
\vdots
$$

\n
$$
y_n = b_n - \ell_{n,1} y_1 - \ell_{n,2} y_2 - \cdots - \ell_{n,n-1} y_{n-1}
$$

rewriting the formulas

 \Rightarrow all instructions in the *j* loop are independent from each other!

Þ

 Ω

Bara B

4 0 8

data parallelism

Consider the inner loop in the algorithm to solve $Ly = b$:

 $y := b$; for *i* from 2 to *n* do for *j* from *i* to *n* do $y_j := y_j - \ell_{j,i-1} \star y_{i-1};$

We distribute the update of *yⁱ* , *yi*+1, . . . , *yⁿ* among *p* processors.

If $n \gg p$, then we expect a close to optimal speedup.

1 [Conditioning and Multiple Double Arithmetic](#page-1-0)

- [ill conditioned matrices](#page-1-0)
- [quad double arithmetic](#page-4-0)

2 [On a Parallel Shared Memory Computer](#page-10-0)

- \bullet [rewriting the formulas](#page-10-0)
- [a parallel solver with OpenMP](#page-14-0)

[Accelerated Back Substitution](#page-22-0)

- **•** [partitioning an upper triangular system in tiles](#page-22-0)
- [experimental results](#page-27-0)

a parallel solver

For our parallel solver for triangular systems:

- For $L=[\ell_{i,j}],$ we generate random numbers for $\ell_{i,j}\in[0,1].$ The exact solution **y**: $y_i = 1$, for $i = 1, 2, \ldots, n$. We compute the right hand side $\mathbf{b} = L\mathbf{v}$.
- Even already in small dimensions, the condition number may grow exponentially. Hardware double precision is insufficient. Therefore, we use quad double arithmetic.
- We use a straightforward OpenMP implementation.

 Ω

A BA A BA

solving random lower triangular systems

Relying on hardware doubles is problematic:

\$ time ./trisol 10 last number : 1.0000000000000009e+00

real 0m0.003s user 0m0.001s sys 0m0.002s

 $$ time$ /trisol 100 last number : 9.9999999999974221e-01

real 0m0.005s user 0m0.001s sys 0m0.002s

\$ time ./trisol 1000 last number : 2.7244600009080568e+04

real 0m0.036s user 0m0.025s sys 0m0.009s

化重氮化重氮 医

a matrix of quad doubles

Allocating data in the main program:

```
{
  qd real b[n], y[n];
  qd_real **L;
  L = (qd\_real**) calloc(n, sizeof(qd_real*));
  for(int i=0; i<n; i++)
      L[i] = (qd\_real*) calloc(n, sizeof(qd_real));
```

```
srand(time(NULL));
random triangular system(n, L, b);
```
a random triangular system

```
void random_triangular_system
 ( int n, qd_real **L, qd_real *b )
{
   for(int i=0; i<n; i++)
   {
      L[i][i] = 1.0;for(j=0; j<i; j++)
      {
         double r = ((double) rand())/RAND MAX;
         L[i][i] = qd real(r);
      }
      for(int i=i+1; j \le n; i++)L[i][i] = qd_{real}(0.0);}
   for(int i=0; i<n; i++)
   {
      b[i] = qd_{real}(0.0);for(int j=0; j<n; j++)b[i] = b[i] + L[i][i];}
}
```
KET KALEYA BI YA ARA

solving the system

```
void solve_triangular_system_swapped
 ( int n, qd_real \star\starL, qd_real \starb, qd_real \stary )
{
   for(int i=0; i<n; i++) y[i] = b[i];
   for(int i=1; i<n; i++)
   {
       for(int j=i; j\leq n; j++)y[i] = y[i] - L[i][i-1]*y[i-1];
   }
}
```
в

using OpenMP

```
void solve_triangular_system_swapped
 ( int n, qd real **L, qd real *b, qd real *v )
{
   int j;
   for(int i=0; i<n; i++) y[i] = b[i];for(int i=1; i<n; i++)
   {
      #pragma omp parallel shared(L, y) private(j)
      {
         #pragma omp for
         for(i = i; i < n; i + j)
            y[i] = y[i] - L[i][i-1]*y[i-1];
      }
   }
```
}

STEP

experimental timings

time ./trisol_qd_omp n p on 12-core Intel X5690, 3.47 GHz. for dimension $n = 8,000$, for varying number p of cores.

The serial part is the generation of the random numbers for *L* and the computation of $\mathbf{b} = L\mathbf{v}$. Recall Amdahl's Law.

We can compute the serial time, subtracting for $p = 1$, from the real time the cpu time spent in the solver, i.e.: $35.095 - 21.240 = 13.855$. For $p = 12$, time spent on the solver is $15.781 - 13.855 = 1.926$. Compare 1.926 to $21.240/12 = 1.770$.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

1 [Conditioning and Multiple Double Arithmetic](#page-1-0)

- [ill conditioned matrices](#page-1-0)
- [quad double arithmetic](#page-4-0)

2 [On a Parallel Shared Memory Computer](#page-10-0) \bullet [rewriting the formulas](#page-10-0) [a parallel solver with OpenMP](#page-14-0) \bullet

[Accelerated Back Substitution](#page-22-0) • [partitioning an upper triangular system in tiles](#page-22-0) \bullet [experimental results](#page-27-0)

partitioning an upper triangular system in tiles

Consider a 3-by-3-tiled upper triangular system U **x** = **b**

$$
U=\left[\begin{array}{cc}U_1 & A_{1,2} & A_{1,3} \\ & U_2 & A_{2,3} \\ & & U_3\end{array}\right],\quad \mathbf{x}=\left[\begin{array}{c}\mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3\end{array}\right],\quad \mathbf{b}=\left[\begin{array}{c}\mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3\end{array}\right],
$$

where *U*1, *U*2, *U*³ are upper triangular, with nonzero diagonal elements.

Invert all diagonal tiles:
$$
\begin{bmatrix} U_1^{-1} & A_{1,2} & A_{1,3} \ & U_2^{-1} & A_{2,3} \ & & U_3^{-1} \end{bmatrix}.
$$

The inverse of an upper triangular matrix is upper triangular.

- Solve an upper triangular system for each column of the inverse.
- The columns of the inverse can be computed independently.
- \Rightarrow Solve many smaller upper triangular systems in parallel.

 \equiv

 Ω

イロト イ押 トイラ トイラトー

the second stage

Solve
$$
Ux = b
$$
 for $U = \begin{bmatrix} U_1^{-1} & A_{1,2} & A_{1,3} \\ U_2^{-1} & A_{2,3} & U_3^{-1} \end{bmatrix}$

in the following steps:

1)
$$
\mathbf{x}_3 := U_3^{-1} \mathbf{b}_3
$$
,
\n2) $\mathbf{b}_2 := \mathbf{b}_2 - A_{2,3} \mathbf{x}_3$, $\mathbf{b}_1 := \mathbf{b}_1 - A_{1,3} \mathbf{x}_3$,
\n4) $\mathbf{x}_2 := U_2^{-1} \mathbf{b}_2$,
\n5) $\mathbf{b}_1 := \mathbf{b}_1 - A_{1,2} \mathbf{x}_2$,
\n6) $\mathbf{x}_1 := U_1^{-1} \mathbf{b}_1$.

Statements on the same line can be executed in parallel.

In multiple double precision, several blocks of threads collaborate in the computation of one matrix-vector product.

 Ω

医单位 医单位

two stages, three kernels

Algorithm 1: TILED ACCELERATED BACK SUBSTITUTION. Input : *N* is the number of tiles, *n* is the size of each tile, *U* is an upper triangular *Nn*-by-*Nn* matrix, **b** is a vector of size *Nn*. Output : \mathbf{x} is a vector of size *Nn*: $U\mathbf{x} = \mathbf{b}$.

1 Let U_1, U_2, \ldots, U_N be the diagonal tiles. The *k*th thread solves $U_i\mathbf{v}_k = \mathbf{e}_k$, computing the *k*th column U_i^{-1} *i* .

• For
$$
i = N, N - 1, ..., 1
$$
 do

- \mathbf{D} *n* threads compute $\mathbf{x}_i = U^{-1}\mathbf{b}_i;$
- ² simultaneously update **b***^j* with **b***^j* − *Aj*,*i***x***ⁱ* ,
	- *j* ∈ {1, 2, . . . , *i* − 1} with *i* − 1 blocks of *n* threads.

A parallel execution could run in time proportional to *Nn*.

 Ω

4 何 ト 4 ヨ ト 4 ヨ ト ニ ヨ

data staging

A matrix *U* of multiple doubles is stored as $[U_1, U_2, \ldots, U_m]$,

- *U*¹ holds the most significant doubles of *U*,
- *U^m* holds the least significant doubles of *U*.

Similarly, **b** is an array of *m* arrays $[\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_m]$, sorted in the order of significance.

In complex data, real and imaginary parts are stored separately.

The main advantages of this representation are twofold:

- ¹ facilitates staggered application of multiple double arithmetic,
- 2 benefits efficient memory coalescing, as adjacent threads in one block of threads read/write adjacent data in memory, avoiding bank conflicts.

 Ω

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

1 [Conditioning and Multiple Double Arithmetic](#page-1-0)

- [ill conditioned matrices](#page-1-0)
- [quad double arithmetic](#page-4-0)

2 [On a Parallel Shared Memory Computer](#page-10-0) \bullet [rewriting the formulas](#page-10-0) [a parallel solver with OpenMP](#page-14-0) \bullet

[Accelerated Back Substitution](#page-22-0) • [partitioning an upper triangular system in tiles](#page-22-0) • [experimental results](#page-27-0)

experimental setup

About the input matrices:

- Random numbers are generated for the input matrices.
- Condition numbers of random triangular matrices almost surely grow exponentially [Viswanath & Trefethen, 1998].
- In the standalone tests, the upper triangular matrices are the Us of an LU factorization of a random matrix, computed by the host.

Two input parameters are set for every run:

- **•** The size of each tile is the number of threads in a block. The tile size is a multiple of 32.
- The number of tiles equals the number of blocks. As the V100 has 80 streaming multiprocessors, the number of tiles is at least 80.

back substitution on the V100, milliseconds, Gigaflops

Þ

 298

4 0 8 1 \leftarrow \leftarrow \leftarrow

2-logarithms of times on the V100 in 3 precisions

Consider the doubling of the dimension and the precision.

- Double the dimension, expect the time to quadruple.
- ² From double double to quad double: 11.7 is multiplier, from quad double to octo double: 5.4 times longer.

The heights of the bars are closer to each other in higher dimensions.

∽≏∩

kernel times in quad double precision on 3 GPUs

The V100 has 80 multiprocessors,

its theoretical peak performance is 1.68 times that of the P100.

The value for *N* is fixed at 80, *n* runs from 32 to 256:

Observe the heights of the bars as the dimensions double and the relative performance of the three different GPUs.

$20480 = 320 \times 64 = 160 \times 128 = 80 \times 256$

Back substitution in quad double precision, for $20480 = N \times n$, for three different combinations of *N* and *n*, on the V100.

The units of all times are milliseconds, flops unit is Gigaflops.

 Ω

イロト イ押 トイラト イラト

recommended reading

D. H. Heller.

A survey of parallel algorithms in numerical linear algebra. *SIAM Review*, 20(4):740–777, 1978.

- W. Nasri and Z. Mahjoub. **Optimal parallelization of a recursive algorithm for triangular matrix inversion on MIMD computers.** *Parallel Computing*, 27:1767–1782, 2001.
- J. Verschelde.

Least squares on GPUs in multiple double precision. In *The 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)*, pages 828–837. IEEE, 2022.

Code at github.com/janverschelde/PHCpack/src/GPU.

в

 Ω

医单位 医单位

4 ロ ト ィ *同* ト

Exercises

- **1** Write a parallel solver with OpenMP to solve $U\mathbf{x} = \mathbf{y}$. Take for *U* a matrix with random numbers in [0, 1], compute **y** so all components of **x** equal one. Test the speedup of your program, for large enough values of *n* and a varying number of cores.
- ² Describe a parallel solver for upper triangular systems *U***y** = **b** for distributed memory computers. Write a prototype implementation using MPI and discuss its scalability.
- **3** Consider a tiled lower triangular system $L\mathbf{x} = \mathbf{b}$. Develop a parallel solver with OpenMP, or with Julia.

E

 Ω

A BAK BA