Solving Triangular Systems

0 Conditioning and Multiple Double Arithmetic
@ ill conditioned matrices
@ quad double arithmetic

e On a Parallel Shared Memory Computer
@ rewriting the formulas
@ a parallel solver with OpenMP

e Accelerated Back Substitution
@ partitioning an upper triangular system in tiles
@ experimental results

MCS 572 Lecture 27
Introduction to Supercomputing
Jan Verschelde, 28 October 2024

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 1/35

Solving Triangular Systems

0 Conditioning and Multiple Double Arithmetic
@ ill conditioned matrices

Introduction to Supercomputing (MCS 572)

Solving Triangular Systems

ill conditioned matrices

Consider the 4-by-4 lower triangular matrix

1 0 00

-2 1 00

L= -2 -2 10
-2 -2 -2 1

What we know from numerical analysis:

@ The condition number of a matrix magnifies roundoff errors.
@ The hardware double precision is 2752 ~ 2.2 x 10716,

© We get no accuracy from condition numbers larger than 1076.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 3/35

an experiment in an interactive Julia session

julia> using LinearAlgebra

julia> A ones (32,32);

julia> D = Diagonal (A);

julia> L LowerTriangular (A);
julia> LmD = L - D;
julia> L2 = D - 2%LmD;

julia> cond(L2)
2.41631630569077el6

The condition number is estimated at 2.4 x 1016,

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 4/35

Solving Triangular Systems

0 Conditioning and Multiple Double Arithmetic

@ quad double arithmetic

Introduction to Supercomputing (MCS 572)

Solving Triangular Systems

quad double arithmetic

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 x 1016 t0 2.4 x 10763,

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double precision
floating point arithmetic. In 15th IEEE Symposium on Computer Arithmetic
pages 155-162. |IEEE, 2001. Software at
http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.17.tar.gz.

A quad double builds on double double, some features:

@ The least significant part of a double double can be interpreted
as a compensation for the roundoff error.

@ Predictable overhead: working with double double is of the
same cost as working with complex numbers.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 6/35

operator overloading in C++

#include <iostream>
#include <iomanip>
#include <gd/gd_real.h>
using namespace std;

int main (void)
{
qgd_real g("2");
cout << setprecision(64) << g << endl;
for(int i=0; 1i<8; i++)
{
gd_real dg = (g*g — 2.0)/(2.0%q);
g = g - dg; cout << g << endl;

}
cout << scientific << setprecision(4);
cout << "residual : " << gxg - 2.0 << endl;

return 0;

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023

7/35

compiling with a makefile

On pascal, the makefile contains the entry:

QD_ROOT=/usr/local/qgd-2.3.17
QOD_LIB=/usr/local/lib

gd4dsqrt2:
g++ —-IS$(QD_ROOT)/include gddsqrt2.cpp \
$(QD_LIB) /libgd.a \
-0 gd4sqgrt2

Compiling at the command prompt s:

$ make gd4sqrt2

g++ —-I/usr/local/qd-2.3.17/include gddsqrt2.cpp \
/usr/local/lib/libgd.a \
-0 qgd4sqgrt2

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 8/35

running the code

$./gddsqgrt2
2.00e+00
1.5000e+00
1.416667e+00
1.4142156862745098039215686274509803921568627450980392156862745098e+00
1.4142135623746899106262955788901349101165596221157440445849050192e+00
1.4142135623730950488016896235025302436149819257761974284982894987e+00
1.4142135623730950488016887242096980785696718753772340015610131332e+00
1.4142135623730950488016887242096980785696718753769480731766797380e+00
1.4142135623730950488016887242096980785696718753769480731766797380e+00
residual : 0.0000e+00

$

General multiple double arithmetic is available:

M. Joldes, J.-M. Muller, V. Popescu, W. Tucker.

CAMPARY: Cuda Multiple Precision Arithmetic Library and Applications.
In Mathematical Software — ICMS 2016, the 5th International Conference on
Mathematical Software, pages 232—240, Springer-Verlag, 2016.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 9/35

Numerical Conditioning and Stability

The condition number of a random number is known to grow
exponentionally in the dimension, almost surely, as demonstrated in
@ D. Viswanath and L. N. Trefethen.
Condition numbers of random triangular matrices.
SIAM J. Matrix Anal. Appl., 19(2):564-581, 1998.

The numerical stability of various parallel algorithms
to solve triangular systems is discussed in

@ N. J. Higham.

Stability of parallel triangular system solvers.
SIAM J. Sci. Comput., 16(2):400-413, 1995.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 10/35

Solving Triangular Systems

e On a Parallel Shared Memory Computer
@ rewriting the formulas

Introduction to Supercomputing (MCS 572)

Solving Triangular Systems

formulas for forward substitution

Expanding the matrix-vector product Ly in Ly = b leads to

2 = by
la1y1 + Yo = b

l31y1 +L32)2+ Y3 = b3
én,1}’1 + fn,2y2 + fn,SyS +---+ Kn,n—1yn—1 +Yn = bn
and solving for the diagonal elements gives
yio = b

Yo = bo—1lo1ys
Y3 = b3 —1l31y1 — {32y

Yn = bn—tn1y1 —Llnaye— -+ —Llnn_1Yn-1

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 12/35

rewriting the formulas

Solving Ly = b for n = 5:

Q@y-=>b

Q yoi=yo — Loy
Y3 :=Yys—l31 %Y1
Ya:=Y4—Llgq %Y1
Y5 := Y5 — {51 % Y1

Q y3:=y3—la2%ye
Ya = Yo —Llap* Yo

Y5 :=Y5 —ls2% Y2 y:=b;
Q yis=ys—laz*ys for i from 2 to ndo
Y5 :=Ys —l53% Y3 for j from i to ndo
Q y5:=y5—lsa*ys Vi =Y = it * Vit

= all instructions in the j loop are independent from each other!

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 13/35

data parallelism

Consider the inner loop in the algorithm to solve Ly = b:
y :=b;
for i from 2 to ndo
for j from i to ndo

Yi =Y —4ji—1%VYi-1;

We distribute the update of y;, yji1,...,¥n» among p processors.

If n>> p, then we expect a close to optimal speedup.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 14/35

Solving Triangular Systems

e On a Parallel Shared Memory Computer

@ a parallel solver with OpenMP

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 15/35

a parallel solver

For our parallel solver for triangular systems:

@ For L = [¢;;], we generate random numbers for /; ; € [0, 1].
The exact solutiony: y;=1,fori=1,2,...,n.
We compute the right hand side b = Ly.

@ Even already in small dimensions,
the condition number may grow exponentially.

Hardware double precision is insufficient.
Therefore, we use quad double arithmetic.

@ We use a straightforward OpenMP implementation.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023

16/35

solving random lower triangular systems

Relying on hardware doubles is problematic:

S time ./trisol 10
last number : 1.0000000000000009e+00

real Om0.003s user Om0.001s Sys

$ time ./trisol 100
last number : 9.9999999999974221e-01

real Om0.005s user Om0.001s SYys

$ time ./trisol 1000
last number : 2.7244600009080568e+04

real Om0.036s user Om0.025s SYys

Introduction to Supercomputing (MCS 572) Solving Triangular Systems

Om0.002s

Om0.002s

Om0.009s

L-27 13 March 2023

17/35

a matrix of quad doubles

Allocating data in the main program:

{
gd_real b[nl,y[n];

gd_real =xx*L;

L = (gd_realxx*) calloc(n,sizeof(gd_realx));
for(int i=0; i<n; i++)
L[i] = (gd_realx) calloc(n,sizeof (gqd_real));

srand (time (NULL)) ;
random_triangular_system(n,L,b);

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 18/35

a random triangular system

void random_triangular_system
(int n, gd_real xxL, gd_real b)
{
for (int i=0; i<n; i++)
{
L{il(
for (j
{

il = 1.0;
=0; Jj<i; Jj++)
double r = ((double) rand())/RAND_MAX;
L[i][]J] = gd_real(r);
}
for (int j=i+1; Jj<n; Jj++)
L[i][Jj] = gd_real(0.0);
}
for (int 1i=0; i<n; i++)
{
b[i] = gd_real(0.0);
for (int 3=0; Jj<n; Jj++)
b[i] = bl[i] + L[i][]];

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023

19/35

solving the system

void solve_triangular_system_ swapped
(int n, gd_real =xxL,
{

gd_real xb, gd_real =y)
for (int 1=0;

i<n; i++) y[i] = bli];
for (int i=1; i<n; i++)
{
for (int j=i; Jj<n; Jj++)
y[3] = yI[3]
}
}

- L[j]li-1]*yli-1];

Introduction to Supercomputing (MCS 572)

o
Solving Triangular Systems

using OpenMP

void solve_triangular_system_swapped
(int n, gd_real *x*L, gd_real xb, gd_real =y)
{

int j;
for (int 1i=0; i<n; i++) y[i] = bl[i];

for (int i=1; i<n; i++)
{
#pragma omp parallel shared(L,y) private (J)
{
#pragma omp for
for (j=1i; J<n; J++)
y[3l = y[3] - LiJ)[i-1)»y[i-1];

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023

21/35

experimental timings

time ./trisol_qgd_omp n p on 12-core Intel X5690, 3.47 GHz,
for dimension n = 8,000, for varying number p of cores.

p | cpu time real user sys

1| 21.240s | 35.095s 34.493s 0.597s

2 | 22.790s | 25.237s 36.001s 0.620s

4 | 22.330s | 19.433s 35.539s 0.633s

8 | 23.200s | 16.726s 36.398s 0.611s
12 | 23.260s | 15.781s 36.457s 0.626s

The serial part is the generation of the random numbers for L
and the computation of b = Ly. Recall Amdahl’'s Law.

We can compute the serial time, subtracting for p = 1, from the real
time the cpu time spent in the solver, i.e.: 35.095 — 21.240 = 13.855.
For p = 12, time spent on the solver is 15.781 — 13.855 = 1.926.
Compare 1.926 to 21.240/12 = 1.770.

Introduction to Supercomputing (MCS 572)

Solving Triangular Systems

L-27 13 March 2023 22/35

Solving Triangular Systems

@ Accelerated Back Substitution
@ partitioning an upper triangular system in tiles

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 23/35

Introduction to Supercomputing (MCS 572)

partitioning an upper triangular system in tiles

Consider a 3-by-3-tiled upper triangular system Ux = b

U Az A X1 b1
U= U Az |, XxX=|X2 |, b=] by |,
U3 X3 b3

where U, U, Us are upper triangular, with nonzero diagonal elements.

Ul Az A
Invert all diagonal tiles: Uy' A
U

@ The inverse of an upper triangular matrix is upper triangular.
@ Solve an upper triangular system for each column of the inverse.
@ The columns of the inverse can be computed independently.

= Solve many smaller upper triangular systems in parallel.

Solving Triangular Systems L-27 13 March 2023 24/35

the second stage

Ul Az Ais
Solve Ux = b for U = Uy Ags
Uf1
3
in the following steps:
1) %3 = U;'bs,
2) by = by—Axs3xs, by = by —Ai3Xs,
4) % = U;'by,
5) by = by — Aj2Xz,
6) x; = U;'by.

Statements on the same line can be executed in parallel.

In multiple double precision, several blocks of threads collaborate in
the computation of one matrix-vector product.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 25/35

two stages, three kernels

Algorithm 1: TILED ACCELERATED BACK SUBSTITUTION.
Input : N isthe number of tiles,
nis the size of each tile,
U is an upper triangular Nn-by-Nn matrix,
b is a vector of size Nn.
Output : xis a vector of size Nn: Ux = b.

@ Let Uy, U, ..., Uy be the diagonal tiles.
The kth thread solves Ujv, = ex, computing the kth column U,f1.

Q@ Fori=N,N—-1,...,1do
@ nthreads compute x; = U~ 'b;;
@ simultaneously update b; with b; — A; ;x;,
je{1,2,...,i—1} with i — 1 blocks of nthreads.

A parallel execution could run in time proportional to Nn.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 26/35

data staging

A matrix U of multiple doubles is stored as [U, Us, . .., Un],
@ U holds the most significant doubles of U,
@ Up holds the least significant doubles of U.

Similarly, b is an array of m arrays [b1, b, ... ,bny],
sorted in the order of significance.

In complex data, real and imaginary parts are stored separately.

The main advantages of this representation are twofold:
@ facilitates staggered application of multiple double arithmetic,

© benefits efficient memory coalescing,

as adjacent threads in one block of threads read/write adjacent
data in memory, avoiding bank conflicts.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 27/35

Solving Triangular Systems

e Accelerated Back Substitution

@ experimental results

Introduction to Supercomputing (MCS 572)

Solving Triangular Systems

experimental setup

About the input matrices:
@ Random numbers are generated for the input matrices.

@ Condition numbers of random triangular matrices almost surely
grow exponentially [Viswanath & Trefethen, 1998].

@ In the standalone tests, the upper triangular matrices are the Us
of an LU factorization of a random matrix, computed by the host.

Two input parameters are set for every run:

@ The size of each tile is the number of threads in a block.
The tile size is a multiple of 32.

@ The number of tiles equals the number of blocks.
As the V100 has 80 streaming multiprocessors,
the number of tiles is at least 80.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 29/35

back substitution on the V100, milliseconds, Gigaflops

double double precision

stage in Algorithm 1 || 64 x 80 | 128 x 80 | 256 x 80

invert diagonal tiles 1.2 9.3 46.3
multiply with inverses 1.7 3.3 8.9
back substitution 7.9 4.7 12.2
time spent by kernels 5.0 17.3 67.4

wall clock time

82.0 286.0 966.0

kernel time flops
wall clock flops

190.6 318.7 525.1
11.7 19.2 36.7

quad double precision

stage in Algorithm 1

| 64 x 80 | 128 x 80 | 256 x 80

invert diagonal tiles 6.2 38.3 137.4
multiply with inverses 12.2 23.8 63.1
back substitution 13.3 26.7 112.2
time spent by kernels 31.7 88.8 312.7

wall clock time

187.0 619.0 2268.0

kernel time flops
wall clock flops

Introduction to Supercomputing (MCS 572)

Solving Triangular Systems

299.4 614.2 1122.3
50.8 88.1 154.8

L-27 13 March 2023

30/35

2-logarithms of times on the V100 in 3 precisions

Consider the doubling of the dimension and the precision.
@ Double the dimension, expect the time to quadruple.

© From double double to quad double: 11.7 is multiplier,
from quad double to octo double: 5.4 times longer.

HON WA U O N W
T O Y S S R S

2-log of kernel times in milliseconds

5120 10240 20480

The heights of the bars are closer to each other in higher dimensions.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 31/35

kernel times in quad double precision on 3 GPUs

The V100 has 80 multiprocessors,
its theoretical peak performance is 1.68 times that of the P100.

The value for N is fixed at 80, n runs from 32 to 256:

213 TR 2080 e
1 P100
1w vico

2-log of kernel times in milliseconds
MW A DO~ 0

32 64 926 128 160 192 224 256
Observe the heights of the bars as the dimensions double
and the relative performance of the three different GPUs.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 32/35

20480 = 320 x 64 = 160 x 128 = 80 x 256

Back substitution in quad double precision, for 20480 = N x n,
for three different combinations of N and n, on the V100.

stage in Algorithm 1 || 320 x 64 | 160 x 128 | 80 x 256

invert diagonal tiles 13.5 35.8 132.3
multiply with inverses 49.0 47.5 64.3
back substitution 84.6 91.7 112.3
time spent by kernels 1471 175.0 308.9
wall clock time | 2620.0 2265.0 2071.0

kernel time flops 683.0 861.1 1136.1

wall clock flops 38.3 66.5 169.5

The units of all times are milliseconds, flops unit is Gigaflops.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 33/35

recommended reading

@ D. H. Heller.
A survey of parallel algorithms in numerical linear algebra.
SIAM Review, 20(4):740-777, 1978.

@ W. Nasri and Z. Mahjoub.
Optimal parallelization of a recursive algorithm for triangular
matrix inversion on MIMD computers.
Parallel Computing, 27:1767-1782, 2001.

@ J. Verschelde.
Least squares on GPUs in multiple double precision.
In The 2022 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 828—837.
IEEE, 2022.
Code at github.com/janverschelde/PHCpack/src/GPU.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 34/35

Exercises

@ Write a parallel solver with OpenMP to solve Ux =y.
Take for U a matrix with random numbers in [0, 1], compute y so
all components of x equal one. Test the speedup of your program,
for large enough values of n and a varying number of cores.

@ Describe a parallel solver for upper triangular systems Uy = b for
distributed memory computers. Write a prototype implementation
using MPI and discuss its scalability.

© Consider a tiled lower triangular system Lx = b.

Develop a parallel solver with OpenMP, or with Julia.

Introduction to Supercomputing (MCS 572) Solving Triangular Systems L-27 13 March 2023 35/35

	Conditioning and Multiple Double Arithmetic
	ill conditioned matrices
	quad double arithmetic

	On a Parallel Shared Memory Computer
	rewriting the formulas
	a parallel solver with OpenMP

	Accelerated Back Substitution
	partitioning an upper triangular system in tiles
	experimental results

