
Work Stealing
1 Threading and Tasking

mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

MCS 572 Lecture 15
Introduction to Supercomputing

Jan Verschelde, 30 September 2024

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 1 / 46

Work Stealing

1 Threading and Tasking
mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 2 / 46

mapping jobs to processors

In parallel shared memory computing, we apply the work crew model.

We distinguish between static and dynamic work assignment:
1 Static: before the execution of the program.

Each worker has its own queue of jobs to process.

+ Ideal speedup if jobs are evenly distributed,
− if one worker gets all long jobs, then unbalanced.

2 Dynamic: during the execution of the program.
Workers process the same queue of jobs.

+ The size of each job is taken into account,
− synchronization overhead may dominate for small jobs

and when there are many workers.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 3 / 46

Work Stealing

1 Threading and Tasking
mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 4 / 46

task based programming and work stealing

Tasks are much lighter than threads.
starting and terminating a task is much times faster
than starting and terminating a thread; and
a thread has its own process id and own resources,
whereas a task is typically a small routine.

In scheduling threads on processors,
we distinguish between work sharing and work stealing:

In work sharing, the scheduler attempts to migrate threads to
under-utilized processors in order to distribute the work.
In work stealing, under-utilized processors attempt to steal
threads from other processors.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 5 / 46

Work Stealing

1 Threading and Tasking
mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 6 / 46

work stealing as hybrid work assignment

Work stealing is illustrated
as a hybrid between static and dynamic work assignment:

1 Each worker starts with its own queue.
2 An idle worker will work on jobs of other queues.

Main benefit over dynamic work assignment:
synchronization overhead occurs only at the end of the execution.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 7 / 46

setup of the Julia program

1 As many queues as the number of threads are generated:
I even indexed queues have small jobs,
I odd indexed queues have large jobs.

This generates unbalanced job queues to test the work stealing.

2 The i-th worker starts processing the i-th job queue.

3 Every queue has an index to the current job.
In Julia, this index is of type Atomic{Int},
for mutual exclusive access.

4 After the i-th worker is done with its i-th job queue,
it searches for jobs over all j-th queues, for j 6= i .

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 8 / 46

making the job queues
using Base.Threads

nt = nthreads()

nbr = 10 # number of jobs in each queue
allocate memory for all job queues
jobs = [zeros(nbr) for i=1:nt]

every worker generates its own job queue
even indexed queues have light work loads
@threads for i=1:nt

if i % 2 == 0
jobs[i] = rand((1, 2, 3), nbr)

else
jobs[i] = rand((4, 5, 6), nbr)

end
println("Worker ", threadid(), " has jobs ",

jobs[i], " ", sum(jobs[i]))
end

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 9 / 46

running the program

Each number in the job queue represents the time each job takes.

$ julia -t 4 worksteal.jl
Worker 1 has jobs [6.0, 6.0, 6.0, ... , 5.0] 53.0
Worker 3 has jobs [4.0, 4.0, 5.0, ... , 5.0] 48.0
Worker 4 has jobs [3.0, 2.0, 3.0, ... , 3.0] 24.0
Worker 2 has jobs [2.0, 2.0, 2.0, ... , 2.0] 14.0

The ... represents omitted numbers for brevity.

The last number of the output is the sum of the times of the jobs.

Workers 2 and 4 has clearly lighter loads,
compared to workers 1 and 3.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 10 / 46

every worker starts processing its own queue

jobidx = [Atomic{Int}(1) for i=1:nt]
@threads for i=1:nt

while true
myjob = atomic_add!(jobidx[i], 1)
if myjob > length(jobs[i])

break
end
println("Worker ", threadid(),

" spends ", jobs[i][myjob], " seconds",
" on job ", myjob, " ...")

sleep(jobs[i][myjob])
jobs[i][myjob] = threadid()

end

Observe the use of the Atomic{Int} for the indices.
The myjob = atomic_add!(jobidx[i], 1)

increments the jobidx[i] after returning its value.
This statement is executed in a critical section.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 11 / 46

idle threads steal work

println("Worker ", threadid(), " will steal jobs ...")
more2steal = true
while more2steal

more2steal = false
for j=1:threadid()-1

myjob = atomic_add!(jobidx[j], 1)
if myjob <= length(jobs[j])

println("Worker ", threadid(),
" spends ", jobs[j][myjob], " seconds",
" on job ", myjob, " of ", j, " ...")

sleep(jobs[j][myjob])
jobs[j][myjob] = threadid()

end
more2steal = (myjob < length(jobs[j]))

end
for j=threadid()+1:nt # is similar to previous code

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 12 / 46

an example of an output
Worker 4 spends 1.0 seconds on job 7 ...
Worker 2 will steal jobs ...
Worker 2 spends 4.0 seconds on job 4 of 1 ...
Worker 4 spends 3.0 seconds on job 8 ...
Worker 1 spends 4.0 seconds on job 5 ...
Worker 4 spends 3.0 seconds on job 9 ...
Worker 2 spends 4.0 seconds on job 5 of 3 ...
Worker 3 spends 5.0 seconds on job 6 ...
Worker 4 spends 3.0 seconds on job 10 ...
Worker 1 spends 6.0 seconds on job 6 ...
Worker 3 spends 6.0 seconds on job 7 ...
Worker 4 will steal jobs ...
Worker 4 spends 6.0 seconds on job 7 of 1 ...
Worker 1 spends 4.0 seconds on job 8 ...

Worker 2 is done first, takes job 4 of worker 1.
Worker 1 then continues with job 5.
When worker 4 is done, it takes job 7 of worker 1.
Worker 1 then continues with job 8.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 13 / 46

discussion

Implementing a work crew with work stealing is not
much more complicated than dynamic load balancing.

The idle workers start at the first queue and then progress linearly,
which may be good if the first queue contains all important jobs.

In an alternative work stealing scheme, idle workers would
start in the queue of their immediate neighbors.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 14 / 46

Work Stealing

1 Threading and Tasking
mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 15 / 46

Numba for multithreading in Python

Numba is an open-source JIT compiler that translates
a subset of Python and NumPy into fast machine code using
LLVM, via the llvmlite Python package.

It offers a range of options for parallelising Python code
for CPUs and GPUs, often with only minor code changes.

Started by Travis Oliphant in 2012, under active development
at https://github.com/numba/numba.

To use, do pip install numba.

The example on the next slide works on Windows.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 16 / 46

an example from the wikipedia page

import numba
import random

@numba.jit
def monte_carlo_pi(n_samples: int) -> float:

"""
Applies Monte Carlo to estimate pi.
"""
acc = 0
for i in range(n_samples):

x = random.random()
y = random.random()
if (x**2 + y**2) < 1.0:

acc += 1
return 4.0 * acc / n_samples

p = monte_carlo_pi(1000000)
print(p)

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 17 / 46

Work Stealing

1 Threading and Tasking
mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 18 / 46

Parsl: Parallel Scripting in Python

Parsl provides an intuitive, pythonic way of parallelizing codes by
annotating “apps”: Python functions or external applications that
run concurrently.

Parsl works seamlessly with Jupyter notebooks.

Write once, run anywhere. From laptops to supercomputers.

To use, do pip install parsl.

The example on the next slide was executed on WSL,
Window Subsystem for Linux, Ubuntu 22.04.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 19 / 46

an example from the parsl user guide
from parsl import python_app
import parsl

parsl.load()

Map function that returns double the input integer
@python_app
def app_double(x):

return x*2

Reduce function that returns the sum of a list
@python_app
def app_sum(inputs=()):

return sum(inputs)

Create a list of integers
items = range(0,4)

Map phase: apply the double *app* function to each item in list
mapped_results = []
for i in items:

x = app_double(i)
mapped_results.append(x)

Reduce phase: apply the sum *app* function to the set of results
total = app_sum(inputs=mapped_results)

print(total.result())

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 20 / 46

Work Stealing

1 Threading and Tasking
mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 21 / 46

the Intel Threading Building Blocks

The Intel TBB is a library that helps you leverage multicore
performance without having to be a threading expert.

The advantage of Intel TBB is that it works at a higher level than raw
threads, yet does not require exotic languages or compilers.

The library differs from others in the following ways:
TBB enables you to specify logical parallelism instead of threads;
TBB targets threading for performance;
TBB is compatible with other threading packages;
TBB emphasizes scalable, data parallel programming;
TBB relies on generic programming, (e.g.: use of STL in C++).

Open Source, download at
http://threadingbuildingblocks.org/
which redirects to a github page.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 22 / 46

oneTBB and oneAPI

TBB is part of oneAPI which aims to offer
one single programming model for CPU, GPU, FPGA accelerators.

On M1 MacBook, the openAPI installs with brew, via
brew install tbb and brew install onedpl
where onedpl is formerly known as parallelstl
a C++ Standard library algorithms with support for execution policies.

To use TBB, look on your system for the location of header files and
the libraries.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 23 / 46

saying hello

#include <cstdio>
#include <tbb.h>
using namespace tbb;

class say_hello
{

const char* id;
public:

say_hello(const char* s) : id(s) { }
void operator() () const
{

printf("hello from task %s\n",id);
}

};

A class in C++ is a like a struct in C
for holding data attributes and functions (called methods).

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 24 / 46

the main function

int main()
{

task_group tg;
tg.run(say_hello("1")); // spawn 1st task and return
tg.run(say_hello("2")); // spawn 2nd task and return
tg.wait(); // wait for tasks to complete

}

The run method spawns the task immediately,
but does not block the calling task, so control returns immediately.

To wait for the child tasks to finish, the classing task calls wait.

Observe the syntactic simplicity of task_group.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 25 / 46

Work Stealing

1 Threading and Tasking
mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 26 / 46

raising complex numbers to a large power

Consider the following problem:

Input: n ∈ Z>0, d ∈ Z>0, x ∈ Cn.
Output: y ∈ Cn, yk = xd

k , for k = 1,2, . . . ,n.

To avoid overflow, we take complex numbers on the unit circle.

In C++, complex numbers are defined as a template class.
To instantiate the class complex with the type double we declare

#include <complex>

using namespace std;

typedef complex<double> dcmplx;

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 27 / 46

random complex doubles

#include <cstdlib>
#include <cmath>

dcmplx random_dcmplx (void);
// generates a random complex number
// on the complex unit circle

We compute e2πiθ = cos(2πθ) + i sin(2πθ), for random θ ∈ [0,1]:

dcmplx random_dcmplx (void)
{

int r = rand();
double d = ((double) r)/RAND_MAX;
double e = 2*M_PI*d;
dcmplx c(cos(e),sin(e));
return c;

}

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 28 / 46

writing arrays

#include <iostream>
#include <iomanip>

void write_numbers (int n, dcmplx *x);
// writes the array of n doubles in x

Observe the local declaration int i in the for loop,
the scientific formatting, and the methods real() and imag():

void write_numbers (int n, dcmplx *x)
{

for(int i=0; i<n; i++)
cout << scientific << setprecision(4)

<< "x[" << i << "] = (" << x[i].real()
<< " , " << x[i].imag() << ")\n";

}

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 29 / 46

computing powers

void compute_powers (int n, dcmplx *x,
dcmplx *y, int d);

// for arrays x and y of length n,
// on return y[i] equals x[i]**d

The plain for(int j loop avoids repeated squaring:

void compute_powers (int n, dcmplx *x,
dcmplx *y, int d)

{
for(int i=0; i < n; i++) // y[i] = pow(x[i],d);
{ // pow is too efficient

dcmplx r(1.0,0.0);
for(int j=0; j < d; j++) r = r*x[i];
y[i] = r;

}
}

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 30 / 46

command line arguments
$./powers_serial
how many numbers ? 2
x[0] = (-7.4316e-02 , 9.9723e-01)
x[1] = (-9.0230e-01 , 4.3111e-01)
give the power : 3
x[0] = (2.2131e-01 , -9.7520e-01)
x[1] = (-2.3152e-01 , 9.7283e-01)

$./powers_serial 2 3 1
x[0] = (-7.4316e-02 , 9.9723e-01)
x[1] = (-9.0230e-01 , 4.3111e-01)
x[0] = (2.2131e-01 , -9.7520e-01)
x[1] = (-2.3152e-01 , 9.7283e-01)

$ time ./powers_serial 1000 1000000 0

real 0m20.139s
user 0m20.101s
sys 0m0.000s

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 31 / 46

the main program

int main (int argc, char *argv[])
{

int v = 1; // verbose if > 0
if(argc > 3) v = atoi(argv[3]);
int dim; // get the dimension
if(argc > 1)

dim = atoi(argv[1]);
else
{

cout << "how many numbers ? ";
cin >> dim;

}
// fix the seed for comparisons
srand(20120203); //srand(time(0));
dcmplx r[dim];
for(int i=0; i<dim; i++)

r[i] = random_dcmplx();
if(v > 0) write_numbers(dim,r);

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 32 / 46

the main program continued

int deg; // get the degree
if(argc > 1)

deg = atoi(argv[2]);
else
{

cout << "give the power : ";
cin >> deg;

}
dcmplx s[dim];
compute_powers(dim,r,s,deg);
if(v > 0) write_numbers(dim,s);

return 0;
}

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 33 / 46

the speedup

$ time ./powers_serial 1000 1000000 0

real 0m20.139s
user 0m20.101s
sys 0m0.000s

$ time ./powers_tbb 1000 1000000 0

real 0m1.191s
user 0m35.170s
sys 0m0.043s

The speedup:
20.139
1.191

= 16.909 on two 8-core CPUs.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 34 / 46

on M1 MacBook Air

% /usr/bin/time /tmp/powers_serial 1000 1000000 0
16.23 real 13.15 user 0.02 sys

% /usr/bin/time /tmp/powers_tbb 1000 1000000 0
2.30 real 16.96 user 0.04 sys

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 35 / 46

the class ComputePowers
class ComputePowers
{

dcmplx *const c; // numbers on input
int d; // degree
dcmplx *result; // output
public:

ComputePowers(dcmplx x[], int deg, dcmplx y[])
: c(x), d(deg), result(y) { }

void operator()
(const blocked_range<size_t>& r) const

{
for(size_t i=r.begin(); i!=r.end(); ++i)
{

dcmplx z(1.0,0.0);
for(int j=0; j < d; j++) z = z*c[i];
result[i] = z;

}
}

};

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 36 / 46

tbb/blocked_range.h

#include "tbb/blocked_range.h"

template<typename Value> class blocked_range

A blocked_range represents a half open range [i , j)
that can be recursively split.

void operator()
(const blocked_range<size_t>& r) const

{
for(size_t i=r.begin(); i!=r.end(); ++i)
{

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 37 / 46

calling the parallel_for

#include "tbb/tbb.h"
#include "tbb/blocked_range.h"
#include "tbb/parallel_for.h"

using namespace tbb;

One line changes in the main program:

parallel_for(blocked_range<size_t>(0,dim),
ComputePowers(r,deg,s));

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 38 / 46

Work Stealing

1 Threading and Tasking
mapping jobs to processors
task based programming and work stealing
combining static and dynamic work assignment

2 Multithreading in Python
Numba
Parsl

3 The Intel Threading Building Blocks
our first program with TBB
using the parallel_for
using the parallel_reduce

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 39 / 46

an application of work stealing

from the Intel Threading Building Blocks Tutorial

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 40 / 46

what if no worker is available?

from the Intel Threading Building Blocks Tutorial

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 41 / 46

the class SumIntegers

class SumIntegers
{

int *data;
public:

int sum;
SumIntegers (int *d) : data(d), sum(0) {}
void operator()

(const blocked_range<size_t>& r)
{

int s = sum; // must accumulate !
int *d = data;
size_t end = r.end();
for(size_t i=r.begin(); i != end; ++i)

s += d[i];
sum = s;

}

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 42 / 46

split and join methods

// the splitting constructor
SumIntegers (SumIntegers& x, split) :

data(x.data), sum(0) {}

// the join method does the merge
void join (const SumIntegers& x) { sum += x.sum; }

};

int ParallelSum (int *x, size_t n)
{

SumIntegers S(x);

parallel_reduce(blocked_range<size_t>(0,n), S);

return S.sum;
}

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 43 / 46

code in the main program

int *d;
d = (int*)calloc(n,sizeof(int));
for(int i=0; i<n; i++) d[i] = i+1;

int s = ParallelSum(d,n);

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 44 / 46

Bibliography

Intel Threading Building Blocks. Tutorial.
Available online via http://www.intel.com.
Robert D. Blumofe and Charles E. Leiserson:
Scheduling Multithreaded Computations by Work-Stealing.
In the Proceedings of the 35th Annual IEEE Conference on
Foundations of Computer Science (FoCS 1994), pages 356-368.
Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph
James Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson,
William Lester Plishker, John Shalf, Samuel Webb Williams and
Katherine A. Yelick: The Landscape of Parallel Computing
Research: A View from Berkeley. Technical Report No.
UCB/EECS-2006-183 EECS Department, University of California,
Berkeley, December 18, 2006.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 45 / 46

Exercises

1 A permanent is similar to a determinant but then without the
alternating signs. Develop a task-based parallel program to
compute the permanent of a 0/1 matrix. Why is work stealing
appropriate for this problem?

2 Modify the hello world! program with TBB so that the user is
first prompted for a name. Two tasks are spawned and they use
the given name in their greeting.

3 Modify powers_tbb.cpp so that the i th entry is raised to the
power d − i . In this way not all entries require the same work load.
Run the modified program and compare the speedup to check the
performance of the automatic task scheduler.

Introduction to Supercomputing (MCS 572) Work Stealing L-15 30 September 2024 46 / 46

	Threading and Tasking
	mapping jobs to processors
	task based programming and work stealing
	combining static and dynamic work assignment

	Multithreading in Python
	Numba
	Parsl

	The Intel Threading Building Blocks
	our first program with TBB
	using the parallel_for
	using the parallel_reduce

