Jan Verschelde

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~jan jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Introduction

- Introduction to Tropical Geometry
- 2 Gröbner Bases over Fields with Valuations
 - Iocal and global term orders
 - initial forms of initial forms

Gröbner Complexes

- a universal Gröbner basis
- defining polyhedra
- the Gröbner complex

Tropical Bases

Laurent Polynomials

Introduction

- Introduction to Tropical Geometry
- Gröbner Bases over Fields with Valuations
 local and global term orders
 initial forms of initial forms

Gröbner Complexes

- a universal Gröbner basis
- defining polyhedra
- the Gröbner complex

Tropical Bases

Laurent Polynomials

.∃ >

Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of Diane Maclagan and Bernd Sturmfels.

The web page http://homepages.warwick.ac.uk/staff/D.Maclagan/ papers/TropicalBook.html offers the pdf file of a book, dated 31 March 2014.

Today we look at some building blocks ...

This seminar is based on sections 2.4, 2.5, and 2.6.

Introductio

Introduction to Tropical Geometry

2 Gröbner Bases over Fields with Valuations

- Iocal and global term orders
- initial forms of initial forms

Gröbner Complexes

- a universal Gröbner basis
- defining polyhedra
- the Gröbner complex

Tropical Bases

Laurent Polynomials

a Gröbner basis that does not generate the ideal

The *initial ideal* of a homogeneous ideal *I* in $K[x_0, x_1, ..., x_n]$ is $\operatorname{in}_{\mathbf{w}}(I) = \langle \operatorname{in}_{\mathbf{w}}(f) : f \in I \rangle \subset \mathbb{K}[x_0, x_1, ..., x_n]$, \mathbb{K} is the residue field. A *Gröbner basis* for *I* with respect to **w** is

• a finite set
$$\mathcal{G} = \{ g_1, g_2, \dots, g_s \} \subset I$$
,

• with $\langle \operatorname{in}_{\mathbf{w}}(g_1), \operatorname{in}_{\mathbf{w}}(g_2), \dots, \operatorname{in}_{\mathbf{w}}(g_s) \rangle = \operatorname{in}_{\mathbf{w}}(I).$

Consider a *nonhomogeneous* ideal $I = \langle x \rangle \subset K[x]$ and w = 1. Then $\mathcal{G} = \{x - x^2\}$ is a Gröbner basis for I, as $in_{(1)}(\mathcal{G}) = \{x\}$ and $in_{(1)}(I) = \langle x \rangle$.

However, \mathcal{G} does not generate *I* because $x \notin \langle x - x^2 \rangle$. There is no polynomial $f \in K[x]$: $x = (x - x^2)f$.

$$\begin{aligned} \mathbf{x} &= (\mathbf{x} - \mathbf{x}^2)f & \Leftrightarrow \quad \mathbf{1} = (\mathbf{1} - \mathbf{x})f \\ & \Leftrightarrow \quad \mathbf{1} \cdot \mathbf{x}^0 + \mathbf{0} \cdot \mathbf{x}^1 = f \cdot \mathbf{x}^0 - f \cdot \mathbf{x}^1 \\ & \Leftrightarrow \quad \mathbf{1} = f \text{ and } \mathbf{0} = f. \end{aligned}$$

local orders and homogeneous ideals

The point is that in_w is a local, not a global monomial order. Consider

$$(1-x)x = x - x^2 \quad \Leftrightarrow \quad x = \frac{x-x^2}{1-x} = (x-x^2)\sum_{i=0}^{\infty} x^i.$$

Instead of working with power series, a *weak* normal form is computed by Mora's normal form algorithm, which leads to standard basis.

For homogeneous ideals, Mora's normal form algorithm becomes equal to Buchberger's algorithm to compute a Gröbner basis.

Working with homogeneous ideals *I* over fields with valuations, the definition $\langle \operatorname{in}_{\mathbf{w}}(g_1), \operatorname{in}_{\mathbf{w}}(g_2), \ldots, \operatorname{in}_{\mathbf{w}}(g_s) \rangle = \operatorname{in}_{\mathbf{w}}(I)$ for a finite set $\mathcal{G} = \{ g_1, g_2, \ldots, g_s \} \subset I$ gives a basis for *I*.

(日)

initial forms of initial forms of polynomials

The initial form of an initial form is an initial form.

Lemma (Lemma 2.4.5)

Fix $f \in K[x_0, x_1, ..., x_n]$, $\mathbf{w} \in \Gamma_{val}^{n+1}$, and $\mathbf{v} \in \mathbb{Q}^{n+1}$. There exists an $\epsilon > 0$ such that for all $\delta \in \Gamma_{val}$ with $0 < \delta < \epsilon$, we have

$$\operatorname{in}_{\mathbf{v}}(\operatorname{in}_{\mathbf{w}}(f)) = \operatorname{in}_{\mathbf{w}+\delta\mathbf{v}}(f).$$

Proof. Let $f = \sum_{\mathbf{u} \in \mathbb{N}^{n+1}} c_{\mathbf{u}} x^{\mathbf{u}}$. $W = \min(\operatorname{val}(c_{\mathbf{u}}) + \langle \mathbf{u}, \mathbf{w} \rangle, c_{\mathbf{u}} \neq 0)$. Then:

$$\operatorname{in}_{\mathbf{w}}(f) = \sum_{\mathbf{u}\in\mathbb{N}^{n+1}} \overline{c_{\mathbf{u}}t^{\langle \mathbf{w},\mathbf{u}
angle - W}} \mathbf{x}^{\mathbf{u}}.$$

Let $W' = \min(\langle \mathbf{v}, \mathbf{u} \rangle : \operatorname{val}(c_{\mathbf{u}}) + \langle \mathbf{u}, \mathbf{w} \rangle = W)$. Then:

$$\operatorname{in}_{\mathbf{v}}(\operatorname{in}_{\mathbf{w}}(f)) = \sum_{\langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{W}'} \overline{c_{\mathbf{u}} t^{\langle \mathbf{w}, \mathbf{u} \rangle - W}} \mathbf{x}^{\mathbf{u}}.$$

(日)

proof continued

Recall the notations:

$$W = \min(\operatorname{val}(c_{\mathbf{u}}) + \langle \mathbf{u}, \mathbf{w} \rangle, c_{\mathbf{u}} \neq 0) = \operatorname{trop}(f)(\mathbf{w}),$$

$$W' = \min(\langle \mathbf{v}, \mathbf{u} \rangle : \operatorname{val}(c_{\mathbf{u}}) + \langle \mathbf{u}, \mathbf{w} \rangle = W).$$

For sufficiently small $\epsilon > 0$, we have:

$$\operatorname{trop}(f)(\mathbf{w} + \epsilon \mathbf{v}) = \min(\operatorname{val}(c_{\mathbf{u}}) + \langle \mathbf{w}, \mathbf{u} \rangle + \epsilon \langle \mathbf{v}, \mathbf{u} \rangle) = W + \epsilon W'$$

and

$$\{\mathbf{u} : \operatorname{val}(\mathbf{c}_{\mathbf{u}}) + \langle \mathbf{w} + \delta \mathbf{v}, \mathbf{u} \rangle = \mathbf{W} + \epsilon \mathbf{W}'\} \\ = \{\mathbf{u} : \operatorname{val}(\mathbf{c}_{\mathbf{u}}) + \langle \mathbf{w}, \mathbf{u} \rangle = \mathbf{W}, \langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{W}'\}.$$

This implies $\operatorname{in}_{\mathbf{w}+\delta\mathbf{v}}(f) = \operatorname{in}_{\mathbf{v}}(\operatorname{in}_{\mathbf{w}}(f))$ for $\delta \in \Gamma_{\operatorname{val}}$ with $0 < \delta < \epsilon$. QED

initial forms of initial forms of ideals

Lemma (Lemma 2.4.6)

Let I be a homogeneous ideal in $K[x_0, x_1, ..., x_n]$ and fix $\mathbf{w} \in \Gamma_{val}$. There exists a $\mathbf{v} \in \mathbb{Q}^{n+1}$ and $\epsilon > 0$ such that

(1) $\operatorname{in}_{\mathbf{v}}(\operatorname{in}_{\mathbf{w}}(I))$ and $\operatorname{in}_{\mathbf{w}+\epsilon\mathbf{v}}(I)$ are monomial ideals; and

$$in_{\mathbf{v}}(in_{\mathbf{w}}(I)) \subseteq in_{\mathbf{w}+\epsilon\mathbf{v}}(I).$$

Corollary (Corollary 2.4.9)

Let I be a homogeneous ideal in $K[x_0, x_1, ..., x_n]$. For any $\mathbf{w} \in \Gamma_{\text{val}}^{n+1}$ and $\mathbf{v} \in \mathbb{Q}^{n+1}$ there exists $\epsilon > 0$ such that

 $\operatorname{in}_{\mathbf{v}}(\operatorname{in}_{\mathbf{w}}(I)) = \operatorname{in}_{\mathbf{w}+\delta\mathbf{v}}(I)$ for all $0 < \delta < \epsilon$ with $\delta\mathbf{v} \in \Gamma_{\operatorname{val}}^{n+1}$.

Introduction

- Introduction to Tropical Geometry
- Gröbner Bases over Fields with Valuations
 local and global term orders
 initial forms of initial forms

Gröbner Complexes

- a universal Gröbner basis
- defining polyhedra
- the Gröbner complex

Tropical Bases

Laurent Polynomials

motivation

For homogeneous ideals in $K[x_0, x_1, ..., x_n]$ over a field with a valuation we can define Gröbner bases.

There is no natural intrinsic notion for Gröbner bases for ideals in the Laurent polynomial ring $K[\mathbf{x}^{\pm 1}] = K[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$.

The tropical basis is the natural analogue to the notion of a *universal* Gröbner basis.

The goal of section 2.5 is to construct a polyhedral complex from a given homogeneous ideal $I \subset K[x_0, x_1, \dots, x_n]$.

a universal Gröbner basis

Consider a homogeneous ideal $I \subset K[x_0, x_1, ..., x_n]$. A universal Gröbner basis for I

- is a finite subset \mathcal{U} of I, such that:
- for all $\mathbf{w} \in \Gamma_{\text{val}}^{n+1}$, $\operatorname{in}_{\mathbf{w}}(\mathcal{U}) = \{ \operatorname{in}_{\mathbf{w}}(f) : f \in \mathcal{U} \}$ generates $\operatorname{in}_{\mathbf{w}}(I)$ in $\mathbb{K}[x_0, x_1, \dots, x_n]$.

Example:

$$\mathcal{U} = \left\{ \begin{array}{c} x_1(x_2 + x_3 - x_1), x_2(x_1 + x_3 - x_2), x_3(x_1 + x_2 - x_3), \\ x_1x_2(x_1 - x_2), x_1x_3(x_1 - x_3), x_2x_3(x_2 - x_3) \end{array} \right\}.$$

is a universal Gröbner basis for

$$I = \langle \mathcal{U} \rangle = \langle \mathbf{x}_1 - \mathbf{x}_2, \mathbf{x}_3 \rangle \cap \langle \mathbf{x}_1 - \mathbf{x}_3, \mathbf{x}_2 \rangle \cap \langle \mathbf{x}_2 - \mathbf{x}_3, \mathbf{x}_1 \rangle.$$

However, *I* contains $x_1x_2x_3$, a unit in $K[\mathbf{x}^{\pm 1}]$, so \mathcal{U} is not tropical basis.

defining polyhedra

For a homogeneous ideal $I \subset K[x_0, x_1, ..., x_n]$ and for $\mathbf{w} \in \Gamma_{\text{val}}^{n+1}$ we set

$$C_{I}[\mathbf{w}] = \{ \mathbf{v} \in \Gamma_{\mathrm{val}}^{n+1} : \mathrm{in}_{\mathbf{v}}(I) = \mathrm{in}_{\mathbf{w}}(I) \}.$$

Let $\overline{C_l[\mathbf{w}]}$ be the closure of $C_l[\mathbf{w}]$ in \mathbb{R}^{n+1} in the Euclidean topology. Consider a Gröbner basis $\{g_1, g_2, \dots, g_s\}$ of *l* with respect to \mathbf{w} , and let $\operatorname{in}_{\mathbf{w}}(g_i) = \mathbf{x}^{\mathbf{u}_i}$, for $g_i = \sum_{\mathbf{v} \in \mathbb{N}^{n+1}} c_{i,\mathbf{v}} \mathbf{x}^{\mathbf{v}}$.

If $\overline{C_l[\mathbf{w}]}$ has the inequality description

 $\{ \mathbf{z} \in \mathbb{R}^{n+1} : \langle \mathbf{u}_i, \mathbf{z} \rangle \leq \operatorname{val}(c_{i,\mathbf{v}}) + \langle \mathbf{v}, \mathbf{z} \rangle, \text{ for } 1 \leq i \leq s, \mathbf{v} \in \mathbb{N}^{n+1} \},\$

then $\overline{C_{I}[\mathbf{w}]}$ is a Γ_{val} -rational polyhedron.

A polyhedron $P = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \le \mathbf{b} \}$ is Γ -rational if $A \in \mathbb{Q}^{d \times n}$ and $\mathbf{b} \in \Gamma^d$.

the inequality description

The inequality description of $\overline{C_l[\mathbf{w}]}$

 $\{ \mathbf{z} \in \mathbb{R}^{n+1} : \langle \mathbf{u}_i, \mathbf{z} \rangle \leq \operatorname{val}(c_{i,\mathbf{v}}) + \langle \mathbf{v}, \mathbf{z} \rangle, \text{ for } 1 \leq i \leq s, \mathbf{v} \in \mathbb{N}^{n+1} \},\$

is proven in the proof of the following:

Proposition (Proposition 2.5.2)

The set $\overline{C_{l}[\mathbf{w}]}$ is a Γ -rational polyhedron which contains the line $\mathbb{R}(1, 1, ..., 1)$ as its largest affine subspace. If $\operatorname{in}_{\mathbf{w}}(I)$ is not a monomial ideal, then there exists $\mathbf{v} \in \Gamma_{\operatorname{val}}^{n+1}$ such that $\operatorname{in}_{\mathbf{v}}(I)$ is a monomial ideal and $\overline{C_{l}[\mathbf{w}]}$ is a proper face of $\overline{C_{l}[\mathbf{v}]}$.

properties of $C_l[\mathbf{w}]$

The *lineality space* V of a polyhedron P is the largest affine subspace contained in P. We have that $\mathbf{x} \in P$, $\mathbf{v} \in V$ implies $\mathbf{x} + \mathbf{v} \in P$.

Denote by $\mathbf{1} = (1, 1, ..., 1) \in \mathbb{R}^{n+1}$. Recall that *I* is homogeneous. The line $\mathbb{R}\mathbf{1}$ is the lineality space of $\overline{C_I[\mathbf{w}]}$.

Theorem (Theorem 2.5.3)

The polyhedra $\overline{C_{l}[\mathbf{w}]}$ as \mathbf{w} varies over Γ_{val}^{n+1} form a Γ_{val} -polyhedral complex inside the *n*-dimensional space $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$.

Lemma (Lemma 2.5.4)

Let *I* be a homogeneous ideal in $K[x_0, x_1, ..., x_n]$. There are only finitely many distinct monomial initial ideals $in_{\mathbf{w}}(I)$ as **w** runs over Γ_{val}^{n+1} .

the polyhedral complex

Given a tropical polynomial function $F : \mathbb{R}^{n+1} \to \mathbb{R}$, we write Σ_F for the coarsest polyhedral complex such that F is linear on each cell in Σ_F . The maximal cells of the polyhedral complex Σ_F have the form

$$\sigma = \{ \mathbf{w} \in \mathbb{R}^{n+1} : F(\mathbf{w}) = \mathbf{a} + \langle \mathbf{w}, \mathbf{u} \rangle \}$$

where $a \odot \mathbf{x}^{\mathbf{u}}$ runs over monomials of *F*.

We have $|\Sigma_F| = \mathbb{R}^{n+1}$.

If the coefficients a in $a \odot \mathbf{x}^{\mathbf{u}}$ lie in a subgroup $\Gamma \subset \mathbb{R}$, then the complex $\Sigma_{\mathcal{F}}$ is Γ -rational.

A polyhedral complex Σ is Γ -rational if every $P \in \Sigma$ is Γ -rational.

fix an arbitrary homogeneous ideal

By Lemma 2.5.4, there exists $D \in \mathbb{N}$ such that any initial monomial ideal $\operatorname{in}_{\mathbf{w}}(I)$ has generators of degree at most D.

Let \mathcal{M}_d be the set of monomials of degree d in $K[x_0, x_1, \ldots, x_n]$. The coefficients of a basis $\{f_1, f_2, \ldots, f_s\}$ are stored in the matrix A_d . The rows of A_d are indexed by \mathcal{M}_d . For |J| = s, A_d^J is the *s*-by-*s* minor of A_d with column indexed by J. We define the polynomial

$$g := \prod_{d=1}^{D} g_d$$
, where $g_d := \sum_{\substack{J \subseteq \mathcal{M}_d \ |J| = s}} \det(A_d^J) \prod_{\mathbf{u} \in J} \mathbf{x}^{\mathbf{u}}$

Theorem (Theorem 2.5.6)

If $\mathbf{w} \in \Gamma^{n+1}$ lies in the interior of a maximal cell $\sigma \in \Sigma_{\operatorname{trop}(g)}$, then $\sigma = C_l[\mathbf{w}]$.

the Gröbner complex

Definition (Definition 2.5.7)

For a homogeneous ideal *I* in $K[x_0, x_1, ..., x_n]$, the Gröbner complex $\Sigma(I)$ consists of the polyhedra $\overline{C_I[\mathbf{w}]}$ as **w** ranges over Γ_{val}^{n+1} .

The line \mathbb{R}^1 is the lineality space of $\Sigma(I)$. We identify $\Sigma(I)$ with the quotient complex in $\mathbb{R}^{n+1}/\mathbb{R}^1$.

 $\mathbb{R}^{n+1}/\mathbb{R}^{1}$ is called the *tropical projective torus*.

Points in $\mathbb{R}^{n+1}/\mathbb{R}^1$ can be uniquely represented by vectors of the form $(0, v_1, v_2, \dots, v_n)$.

an example

 $f = t x_1^2 + 2x_1x_2 + 3t x_2^2 + 4x_0x_1 + 5x_0x_2 + 6t x_0^2 \in \mathbb{C}\{\{t\}\}[x_0, x_1, x_2], \\ I = \langle f \rangle.$

The initial ideal $in_{w}(I)$ contains a monomial if and only if the corresponding cell is full dimensional.

• • • • • • • • • • • •

Introduction

- Introduction to Tropical Geometry
- Gröbner Bases over Fields with Valuations
 local and global term orders
 initial forms of initial forms

Gröbner Complexes

- a universal Gröbner basis
- defining polyhedra
- the Gröbner complex

Tropical BasesLaurent Polynomials

Laurent polynomials

Consider
$$f \in K[\mathbf{x}^{\pm 1}] = K[\mathbf{x}_1^{\pm 1}, \mathbf{x}_2^{\pm 1}, \dots, \mathbf{x}_n^{\pm 1}].$$

Initial forms and initial ideals are defined as before, however ...

For generic **w**:

- the initial form $in_{\mathbf{w}}(f)$ is just one monomial in $\mathbb{K}[\mathbf{x}^{\pm 1}]$,
- $\bullet\,$ any monomial in $\mathbb{K}[x^{\pm 1}]$ is a unit, and
- therefore $in_{\mathbf{w}}(I) = \langle 1 \rangle = \mathbb{K}[\mathbf{x}^{\pm 1}].$

Tropical geometry is concerned with the study of those **w** for which $in_{\mathbf{w}}(I)$ is proper in $\mathbb{K}[\mathbf{x}^{\pm 1}]$.

4 **A b b b b b b**

computing with Laurent ideals

Consider a Laurent ideal *I* in $K[\mathbf{x}^{\pm 1}]$.

The homogenization of $I \subset K[\mathbf{x}^{\pm 1}]$ is the ideal $I_{\text{proj}} \subset K[x_0, x_1, \dots, x_n]$ of all polynomials

$$x_0^m f\left(rac{x_1}{x_0},rac{x_2}{x_0},\ldots,rac{x_n}{x_0}
ight), \quad f\in I,$$

where *m* is the smallest integer that clears the denominator.

To compute $in_{w}(I)$, the weight vectors for the homogeneous ideal I_{proj}

- live in $\mathbb{R}^{n+1}/\mathbb{R}^{1}$, and
- we identify $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ with \mathbb{R}^n , via $\mathbf{w} \mapsto (\mathbf{0}, \mathbf{w})$.

initial ideals of Laurent ideals

Proposition (Proposition 2.6.2)

Let *I* be an ideal in $K[\mathbf{x}^{\pm 1}]$ and fix $\mathbf{w} \in \Gamma_{val}^{n}$. Then $\operatorname{in}_{\mathbf{w}}(I)$ is the image of $\operatorname{in}_{(0,\mathbf{w})}(I_{\operatorname{Proj}})$ obtained by $x_{0} = 1$. Every element of $\operatorname{in}_{\mathbf{w}}(I)$ has the form $\mathbf{x}^{\mathbf{u}}g$ where $\mathbf{x}^{\mathbf{u}}$ is a Laurent monomial and $g = f(1, x_{1}, x_{2}, \ldots, x_{n})$ for some $f \in \operatorname{in}_{(0,\mathbf{w})}(I_{\operatorname{proj}})$.

Lemma (Lemma 2.6.3)

Let *I* be an ideal in $K[\mathbf{x}^{\pm 1}]$ and fix $\mathbf{w} \in \Gamma_{val}^{n}$.

If
$$g \in in_{\mathbf{w}}(I)$$
, then $g = in_{\mathbf{w}}(h)$ for some $h \in I$.

2 If $\operatorname{in}_{\mathbf{v}}(\operatorname{in}_{\mathbf{w}}(I)) = \operatorname{in}_{\mathbf{w}}(I)$ for some $\mathbf{v} \in \mathbb{Z}^n$, then $\operatorname{in}_{\mathbf{w}}(I)$ is homogeneous with respect to the grading given by $\operatorname{deg}(x_i) = v_i$.

3 If
$$f, g \in K[\mathbf{x}^{\pm 1}]$$
, then $\operatorname{in}_{\mathbf{w}}(fg) = \operatorname{in}_{\mathbf{w}}(f)\operatorname{in}_{\mathbf{w}}(g)$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

tropical basis

Let *I* be an ideal in the Laurent polynomial ring $K[\mathbf{x}^{\pm 1}]$ over a field *K* with a valuation.

A finite generating set T of I is a *tropical basis* if for all $\mathbf{w} \in \Gamma_{val}^{n}$,

 $in_{w}(I)$ contains a unit

 \Leftrightarrow in_w(\mathcal{T}) = { in_w(f) : $f \in \mathcal{T}$ } contains a unit.

Theorem (Theorem 2.6.5)

Every ideal I in $K[\mathbf{x}^{\pm 1}]$ has a finite tropical basis.

(日)