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Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of
Diane Maclagan and Bernd Sturmfels.

The web page
http://homepages.warwick.ac.uk/staff/D.Maclagan/

papers/TropicalBook.html
offers the pdf file of a book, dated 28 February 2014.

Today we look at some building blocks ...

This seminar is based on sections 1.4, 2.2, and 2.4.
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Zalessky’s conjecture

@ S =C[xi!, x5, ..., xy"!] Laurent polynomial ring
® g = (g;j) € GL(n,Z) invertible integer matrix defines the action

n
g :S—>S:xi|—>Hngi’j
j=1

@ | is a properidealin S
@ the stabilizer group of | is

Stab(l) ={g € GL(n,Z): gl =1}

Theorem (theorem 1 of Bergman 1971)

Stab(l) has a subgroup of finite index,
which stabilizes a nontrivial sublattice of Z".
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from the paper of George M. Bergman

Theorem (theorem 1 of Bergman 1971)

Let | be a nontrivial ideal in K [x*], and H C GL(n, Z) the stabilizer
subgroup of I. Then H has a subgroup Hg of finite index, which
stabilizes a nontrivial subgroup of Z" (equivalently, which can be put

into block-triangular form
*x | X
0|

in GL(n, Z)).
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Bergman’s conceptual proof for K = C

Consider V C (C\ {0})" defined by some nontrivial ideal.

© Look at limiting values of ratios log |1 : log|xz]| : - - - : log Xy
as x € V becomes large.
Identify this set of ratios with the (n — 1)-sphere S"~1.

@ The limiting ratios of logarithms lies in a finite union of proper
great subspheres on S"~1, having rational defining parameters.
© Assuming this, note:
» the intersection of two such finite unions of subspheres
will again be one;
» the family of all finite unions of great subspheres
has a descending chain condition.
There exists a unique finite union U of subspheres minimal for the
property of containing all “logarithmic limit-points at infinity” of V.
If V has positive dimension, U must be nonempty.
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the proof continued

© The space of our n-tuples of logarithms R" arises as the dual
of Z", that is: Homgroups(Z", R).
Thus we get a natural action of GL(n,Z) on R", and so on S"1.
© Clearly U will be invariant under the induced action
of the stabilizer subgroup, H, of I.
By duality, we obtain from the great subspheres of U a family Q of
nontrivial subgroups of Z", also invariant under H.

Q.E.D.

The claim that logarithmic points at infinity of V lie in a finite union of
proper great subspheres of S"—1, consider the support A of any
nonzerof € 1. Atze V:f(z) =) caz® =

acA
At each point of V, at least two terms of the sum (the largest ones)

must be of the same order of magnitude.
Each log |z| lies in one of the finite family of “planks” in R".
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a lemma

Denote the standard unit vectors by eq, ey, ...

Lemma (Lemma 2.2.9)
@ Given any v € Z" with ged(|v1], [V2], ..., |vn]) = 1.
There is a matrix U € GL(n,Z): Uv = e;.
© LetL be arank k subgroup of Z" with Z" /L torsion-free.
There is a matrix U € GL(n,Z) with UL equal to the subgroup
generated by eq, e, ..., €.

To prove the first statement:

o [0 [n)-[2)

= avy+bv, —Vy Vg Vo

Apply n — 1 times repeatedly for a vector of length n.
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torsion-free

Z-module: like a vector space we have scalar multiplication,
but Z is a ring, not a field.

A group G is torsion-free if

Vge G\ {0}andVn e Z\ {0} :ng # 0.

Forn € Z\ {0}: Z/nZ is not torsion-free.
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an example of a lattice
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proof of Lemma 2.2.9

Let L be a rank k subgroup of Z" with Z" /L torsion-free.
There is a matrix U € GL(n, Z) with UL equal to the subgroup
generated by eq, e, ..., &.

Let A € ZK*N contains in its rows a basis for L.

Z" /L is torsion-free = Smith Normal Form (SNF) of Ais A’ = [I 0],
where | is the identity matrix.

By SNF: A’ = VAU/, for V € GL(k,Z) and U’ € GL(n, Z).
Because multiplication by invertible matrix does not change row span,
the row span of VA is the same as the row span of L.
A=[ 0 =le; es - e = (VAU
As AT =U'T(VA)T, take U = U'T.
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9 Polyhedral Geometry
@ inner normal fans
@ Minkowski sum and common refinement
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inner normal fans

Consider a Newton polygon with inner normals to its edges:

The inner normal fan is shown at the left:
@ the rays are normal to the edges of the polygon;

@ normals to the vertices of the polygon are contained
in the strict interior of cones spanned by the rays.
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polyhedral fans

Let P be an n-dimensional polytope.
Denote the inner product by (-, -).

For v # 0, the face of P defined by v is

in(P)={aeP|(av)= Lngig(b,w }.

The iny(-) notation refers to inner forms of polynomials that are
supported on faces of the Newton polytopes.

If we have a face F of P, then its inner normal cone is
cone(F)={veR"|in(P)=F }.

Passing from a face to its normal cone is like passing to the dual.
Taking the dual of the dual brings us back to the original.
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Minkowski sum and common refinement

The Minkowski sum of two sets A,B c R":
A+B={a+blacAbeB}.

The Newton polytope of the product of two polynomials
is the Minkowski sum of their Newton polytopes.

The common refinement of two polyhedral fans F and G is
FAG={PNQ|PeF,QeQ}

The normal fan of the Minkowski sum of two polytopes
is the common refinement of their normal fans.
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regular subdivisions

Let P = conv(a,i =1,2,...,r) C R"
A regular subdivision of P is induced by w = (wy,Wo, ..., W;):
QP-= conv((aj,w;) |i=1,2,...,r).

@ Projecting the facets on the lower hull of P onto R"

— dropping the last coordinate —
gives the cells in the regular subdivision induced by w.

If all cells are simplices (spanned by exactly n + 1 points),
then the regular subdivision is a regular triangulation.

A polyhedral complex C is a collection of polyhedra:

© If a polyhedron P € C, then for all v: in,(P) € C.

Q IfP,Q cC, theneitherPNQ =0 or PN Q is a face of both.
Polytopes, fans, and subdivisions are polyhedral complexes.
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algorithms and software

The computation of the convex hull is a major problem solved by
computational geometry. Problem specification:

@ a collection of points in the plane or in space;
@ a description of all faces of the convex hull.

Solution: apply the beneath-beyond or the giftwrapping method.
Software: Qhull.

In optimization, the linear programming method solves

min(c, X)
subject to Ax > b

Inner normals to facets are subject to a system of linear inequalities.
Software: cddlib, Irs.
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@ Grobner Bases over a Field with a Valuation
@ homogeneous ideals
@ initial ideals and Grobner bases
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the setup

@ K : coefficient field, not required to be algebraically closed
S : the polynomial ring S = K [Xg, X1, ..., Xn]
| : a homogeneous ideal in S

R : the valuation ring of K, R = val(K*),K* = K \ {0}
Mva : the value group isdense inR, Nyg = {x € K :va(x) >0}
Mva = Q for Puiseux series C{{t}}[x*!]
@ K : the residue field, K=R/m,m={x e K :va(x) >0}
If c € K, then denote € € K.
For polynomials f € S:

f=> cax?caceK* f=) Cax
acA

acA

°
°
@ val : a nontrivial valuation, val : K — R U {oco}
°
°
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initial forms

The tropicalization of f =) " cax? is a piecewise linear function
acA

trop(f) : R"™ — R : w — trop(f)(w) = min(val(ca) + (a,w),a € A).

The initial form of f with respect to w is

ing(f) = t-rop(OWf (tWoxg, tWixy, ..., tWnX,)
= W) “catfewixa, W = trop(f)(w)
acA
_ 3 R
acA
va(ca) + (a,w) =W
€ K[xg,X1,--.,Xn]-
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an example

f = (t +t%)%o + 2t%xq + 3t*%2 € C{{t}} x5, xi, x5
c(t) € C{{t}}, c(t) = tPr(1 + O(t)): va(c(t)) = by
W = min(va(ca) + (a,w),a € A)
in(f) = > Cat—val(ca)x?®
acA
va(ca) + (a,w) =W
@ Ifw =(0,0,0),then W =1 and iny(f) = (1 + t)Xo = Xo.
@ Ifw=(4,2,0), then W =4 and iny(f) = 2x; + 3xa.

Note: ing 1 0)(f) = Xo + 2x1.
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initial ideals and Grobner bases

The initial ideal of a homogeneous ideal | in S is
A Grobner basis for | with respect to w is

@ afinitesetG ={091,92,...,0s } C |,

@ with (iny(91),inw(92), -, inw(gs) ) = inw(l).
Lemma (Lemma 2.4.2)

Let | C K[Xg,X1,...,Xs] be a homogeneous ideal and fix w € (I'yg )" 1.
Then iny (1) is homogeneous and we may choose a homogeneous
Grdbner basis for I.

Furthermore, if g € iny(l), then g = iny(f) for some f € I.
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proof of the lemma

To see iny(l) is homogeneous, consider f = Zfi €S,
i>0
where deg(f;) =i and f; is homogeneous.

iny(f) = Z inw(f)
i>0
trop(f)(w) = trop(fi)(w)

Since each homogeneous component of f; lives in I,
inw(l) is generated by elements iny (f) with f homogeneous.

The initial form of a homogeneous polynomial is homogeneous,
so this means that iny (1) is homogeneous.

As S is Noetherian, iny(l) is generated by a finite number of these
inw(f), so the corresponding f form a Grébner basis for I.
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proof of the last claim in the lemma

Furthermore, if g € iny(l), then g = iny(f) for some f € I.

g= anxainw(fa) cing(l), withfyel, foralla
acA

Theng =) _ Cainw (x%fa).
acA
@ For each c,, choose a lift r € R with val(ra) = 0 and 3 = Ca.
@ Let Wy = trop(fa)(w) + (w, a).
o Letf = Z rat~Waxaf,.

acA

Then, by construction, trop(f)(w) = 0 and iny(f) = Z caxqiny(f) = g.
acA
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