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Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of
Diane Maclagan and Bernd Sturmfels.

The web page
http://homepages.warwick.ac.uk/staff/D.Maclagan/

papers/TropicalBook.html

offers the pdf file of a book, dated 28 February 2014.

Today we look at some building blocks ...

This seminar is based on sections 1.4, 2.2, and 2.4.

Jan Verschelde (UIC) varieties & polyhedra 20 March 2014 4 / 26



Algebraic Varieties and Polyhedral Geometry

1 Introduction
Introduction to Tropical Geometry

2 Unimodular Coordinate Transformations
Zalessky’s conjecture and Bergman’s proof
the Smith Normal Form

3 Polyhedral Geometry
inner normal fans
Minkowski sum and common refinement

4 Gröbner Bases over a Field with a Valuation
homogeneous ideals
initial ideals and Gröbner bases

Jan Verschelde (UIC) varieties & polyhedra 20 March 2014 5 / 26



Zalessky’s conjecture

S = C[x±1
1 , x±1

2 , . . . , x±1
n ] Laurent polynomial ring

g = (gi ,j) ∈ GL(n, Z) invertible integer matrix defines the action

g : S → S : xi 7→
n∏

j=1

x
gi,j

j

I is a proper ideal in S

the stabilizer group of I is

Stab(I) = { g ∈ GL(n, Z) : gI = I }

Theorem (theorem 1 of Bergman 1971)

Stab(I) has a subgroup of finite index,
which stabilizes a nontrivial sublattice of Zn.
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from the paper of George M. Bergman

Theorem (theorem 1 of Bergman 1971)

Let I be a nontrivial ideal in K [x±1], and H ⊆ GL(n, Z) the stabilizer
subgroup of I. Then H has a subgroup H0 of finite index, which
stabilizes a nontrivial subgroup of Zn (equivalently, which can be put
into block-triangular form (

⋆ ⋆

0 ⋆

)

in GL(n, Z)).
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Bergman’s conceptual proof for K = C

Consider V ⊆ (C \ {0})n defined by some nontrivial ideal.
1 Look at limiting values of ratios log |x1| : log |x2| : · · · : log |xn|

as x ∈ V becomes large.
Identify this set of ratios with the (n − 1)-sphere Sn−1.

2 The limiting ratios of logarithms lies in a finite union of proper
great subspheres on Sn−1, having rational defining parameters.

3 Assuming this, note:
◮ the intersection of two such finite unions of subspheres

will again be one;
◮ the family of all finite unions of great subspheres

has a descending chain condition.

There exists a unique finite union U of subspheres minimal for the
property of containing all “logarithmic limit-points at infinity” of V .
If V has positive dimension, U must be nonempty.
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the proof continued

4 The space of our n-tuples of logarithms Rn arises as the dual
of Zn, that is: Homgroups(Z

n, R).
Thus we get a natural action of GL(n, Z) on Rn, and so on Sn−1.

5 Clearly U will be invariant under the induced action
of the stabilizer subgroup, H, of I.
By duality, we obtain from the great subspheres of U a family Q of
nontrivial subgroups of Zn, also invariant under H.

Q.E.D.

The claim that logarithmic points at infinity of V lie in a finite union of
proper great subspheres of Sn−1, consider the support A of any
nonzero f ∈ I. At z ∈ V : f (z) =

∑

a∈A

caza = 0.

At each point of V , at least two terms of the sum (the largest ones)
must be of the same order of magnitude.
Each log |z| lies in one of the finite family of “planks” in Rn.
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a lemma

Denote the standard unit vectors by e1, e2, . . .

Lemma (Lemma 2.2.9)
1 Given any v ∈ Zn with gcd(|v1|, |v2|, . . . , |vn|) = 1.

There is a matrix U ∈ GL(n, Z): Uv = e1.
2 Let L be a rank k subgroup of Zn with Zn/L torsion-free.

There is a matrix U ∈ GL(n, Z) with UL equal to the subgroup
generated by e1, e2, . . ., ek .

To prove the first statement:

1 = gcd(v1, v2)
= av1 + bv2

[
a b

−v2 v1

] [
v1

v2

]
=

[
1
0

]
.

Apply n − 1 times repeatedly for a vector of length n.
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torsion-free

Z-module: like a vector space we have scalar multiplication,
but Z is a ring, not a field.

A group G is torsion-free if

∀g ∈ G \ {0} and ∀n ∈ Z \ {0} : ng 6= 0.

For n ∈ Z \ {0}: Z/nZ is not torsion-free.

Jan Verschelde (UIC) varieties & polyhedra 20 March 2014 11 / 26



an example of a lattice
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[
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G = Z2/L = 〈g1, g2〉/0

@
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g1 + 2g2 = 0
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A

≃ Z/5Z
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proof of Lemma 2.2.9

Let L be a rank k subgroup of Zn with Zn/L torsion-free.
There is a matrix U ∈ GL(n, Z) with UL equal to the subgroup
generated by e1, e2, . . ., ek .

Let A ∈ Zk×n contains in its rows a basis for L.

Zn/L is torsion-free ⇒ Smith Normal Form (SNF) of A is A′ = [I 0],
where I is the identity matrix.

By SNF: A′ = VAU ′, for V ∈ GL(k , Z) and U ′ ∈ GL(n, Z).

Because multiplication by invertible matrix does not change row span,
the row span of VA is the same as the row span of L.

A′ = [I 0] = [e1 e2 · · · ek ]T = (VA)U ′

As A′T = U ′T (VA)T , take U = U ′T .
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inner normal fans

Consider a Newton polygon with inner normals to its edges:

j

R

6

)

j

R

6

)

The inner normal fan is shown at the left:

the rays are normal to the edges of the polygon;

normals to the vertices of the polygon are contained
in the strict interior of cones spanned by the rays.
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polyhedral fans

Let P be an n-dimensional polytope.
Denote the inner product by 〈·, ·〉.

For v 6= 0, the face of P defined by v is

inv(P) = { a ∈ P | 〈a, v〉 = min
b∈P

〈b, v〉 }.

The inv(·) notation refers to inner forms of polynomials that are
supported on faces of the Newton polytopes.

If we have a face F of P, then its inner normal cone is

cone(F ) = { v ∈ Rn | inv(P) = F }.

Passing from a face to its normal cone is like passing to the dual.
Taking the dual of the dual brings us back to the original.
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Minkowski sum and common refinement

The Minkowski sum of two sets A, B ⊂ Rn:

A + B = { a + b | a ∈ A, b ∈ B }.

The Newton polytope of the product of two polynomials
is the Minkowski sum of their Newton polytopes.

The common refinement of two polyhedral fans F and G is

F ∧ G = { P ∩ Q | P ∈ F , Q ∈ Q }.

The normal fan of the Minkowski sum of two polytopes
is the common refinement of their normal fans.
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regular subdivisions

Let P = conv(ai , i = 1, 2, . . . , r) ⊂ Rn.

A regular subdivision of P is induced by w = (w1, w2, . . . , wr ):
1 P̂ = conv((ai , wi) | i = 1, 2, . . . , r).
2 Projecting the facets on the lower hull of P̂ onto Rn

— dropping the last coordinate —
gives the cells in the regular subdivision induced by w.

If all cells are simplices (spanned by exactly n + 1 points),
then the regular subdivision is a regular triangulation.

A polyhedral complex C is a collection of polyhedra:
1 If a polyhedron P ∈ C, then for all v: inv(P) ∈ C.
2 If P, Q ∈ C, then either P ∩ Q = ∅ or P ∩ Q is a face of both.

Polytopes, fans, and subdivisions are polyhedral complexes.
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algorithms and software

The computation of the convex hull is a major problem solved by
computational geometry. Problem specification:

a collection of points in the plane or in space;

a description of all faces of the convex hull.

Solution: apply the beneath-beyond or the giftwrapping method.
Software: Qhull.

In optimization, the linear programming method solves

min〈c, x〉
subject to Ax ≥ b

Inner normals to facets are subject to a system of linear inequalities.
Software: cddlib, lrs.
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the setup

K : coefficient field, not required to be algebraically closed

S : the polynomial ring S = K [x0, x1, . . . , xn]

I : a homogeneous ideal in S

val : a nontrivial valuation, val : K → R ∪ {∞}

R : the valuation ring of K , R = val(K ∗), K ∗ = K \ {0}

Γval : the value group is dense in R, Γval = { x ∈ K : val(x) ≥ 0 }
Γval = Q for Puiseux series C{{t}}[x±1]

K : the residue field, K = R/m, m = { x ∈ K : val(x) > 0 }
If c ∈ K , then denote c ∈ K.
For polynomials f ∈ S:

f =
∑

a∈A

caxa, ca ∈ K ∗ f =
∑

a∈A

caxa.
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initial forms

The tropicalization of f =
∑

a∈A

caxa is a piecewise linear function

trop(f ) : Rn+1 → R : w 7→ trop(f )(w) = min(val(ca) + 〈a, w〉, a ∈ A).

The initial form of f with respect to w is

inw(f ) = t−trop(f )(w)f (tw0x0, tw1x1, . . . , twnxn)

= t−W
∑

a∈A

cat〈a,w〉xa, W = trop(f )(w)

=
∑

a ∈ A
val(ca) + 〈a, w〉 = W

cat−val(ca)xa

∈ K[x0, x1, . . . , xn].
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an example

f = (t + t2)x0 + 2t2x1 + 3t4x2 ∈ C{{t}}[x±1
0 , x±1

1 , x±1
2 ]

c(t) ∈ C{{t}}, c(t) = tb1(1 + O(t)): val(c(t)) = b1

W = min(val(ca) + 〈a, w〉, a ∈ A)

inw(f ) =
∑

a ∈ A
val(ca) + 〈a, w〉 = W

cat−val(ca)xa

If w = (0, 0, 0), then W = 1 and inw(f ) = (1 + t)x0 = x0.

If w = (4, 2, 0), then W = 4 and inw(f ) = 2x1 + 3x2.

Note: in(2,1,0)(f ) = x0 + 2x1.
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initial ideals and Gröbner bases

The initial ideal of a homogeneous ideal I in S is

inw(I) = 〈 inw(f ) : f ∈ I 〉 ⊂ K[x0, x1, . . . , xn].

A Gröbner basis for I with respect to w is

a finite set G = { g1, g2, . . . , gs } ⊂ I,

with 〈 inw(g1), inw(g2), . . . , inw(gs) 〉 = inw(I).

Lemma (Lemma 2.4.2)

Let I ⊂ K [x0, x1, . . . , xn] be a homogeneous ideal and fix w ∈ (Γval)
n+1.

Then inw(I) is homogeneous and we may choose a homogeneous
Gröbner basis for I.
Furthermore, if g ∈ inw(I), then g = inw(f ) for some f ∈ I.
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proof of the lemma

To see inw(I) is homogeneous, consider f =
∑

i≥0

fi ∈ S,

where deg(fi ) = i and fi is homogeneous.

inw(f ) =
∑

i ≥ 0
trop(f )(w) = trop(fi)(w)

inw(fi)

Since each homogeneous component of fi lives in I,
inw(I) is generated by elements inw(f ) with f homogeneous.

The initial form of a homogeneous polynomial is homogeneous,
so this means that inw(I) is homogeneous.

As S is Noetherian, inw(I) is generated by a finite number of these
inw(f ), so the corresponding f form a Gröbner basis for I.
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proof of the last claim in the lemma

Furthermore, if g ∈ inw(I), then g = inw(f ) for some f ∈ I.

g =
∑

a∈A

caxainw(fa) ∈ inw(I), with fa ∈ I, for all a

Then g =
∑

a∈A

cainw(xafa).

For each ca, choose a lift ra ∈ R with val(ra) = 0 and ra = ca.

Let Wa = trop(fa)(w) + 〈w, a〉.

Let f =
∑

a∈A

rat−Waxafa.

Then, by construction, trop(f )(w) = 0 and inw(f ) =
∑

a∈A

caxainw(f ) = g.

Jan Verschelde (UIC) varieties & polyhedra 20 March 2014 26 / 26


	Introduction
	Introduction to Tropical Geometry

	Unimodular Coordinate Transformations
	Zalessky's conjecture and Bergman's proof
	the Smith Normal Form

	Polyhedral Geometry
	inner normal fans
	Minkowski sum and common refinement

	Gröbner Bases over a Field with a Valuation
	homogeneous ideals
	initial ideals and Gröbner bases


