Jan Verschelde

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~jan jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Introduction

- Introduction to Tropical Geometry
- 2 Unimodular Coordinate Transformations
 - Zalessky's conjecture and Bergman's proof
 - the Smith Normal Form

Polyhedral Geometry

- inner normal fans
- Minkowski sum and common refinement

Gröbner Bases over a Field with a Valuation

- homogeneous ideals
- initial ideals and Gröbner bases

Introduction

- Introduction to Tropical Geometry
- 2 Unimodular Coordinate Transformations
 - Zalessky's conjecture and Bergman's proof
 - the Smith Normal Form

Polyhedral Geometry

- inner normal fans
- Minkowski sum and common refinement

Gröbner Bases over a Field with a Valuation

- homogeneous ideals
- initial ideals and Gröbner bases

Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of Diane Maclagan and Bernd Sturmfels.

The web page http://homepages.warwick.ac.uk/staff/D.Maclagan/ papers/TropicalBook.html offers the pdf file of a book, dated 28 February 2014.

Today we look at some building blocks ...

This seminar is based on sections 1.4, 2.2, and 2.4.

(日)

Introduction

Introduction to Tropical Geometry

Unimodular Coordinate Transformations Zalessky's conjecture and Bergman's proof

the Smith Normal Form

Polyhedral Geometry

- inner normal fans
- Minkowski sum and common refinement

Gröbner Bases over a Field with a Valuation

- homogeneous ideals
- initial ideals and Gröbner bases

Zalessky's conjecture

• $S = \mathbb{C}[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$ Laurent polynomial ring

• $g = (g_{i,j}) \in \operatorname{GL}(n,\mathbb{Z})$ invertible integer matrix defines the action

$$g: S \to S: x_i \mapsto \prod_{j=1}^n x_j^{g_{i,j}}$$

- I is a proper ideal in S
- the stabilizer group of I is

$$\operatorname{Stab}(I) = \{ \ g \in \operatorname{GL}(n,\mathbb{Z}) : gI = I \}$$

Theorem (theorem 1 of Bergman 1971)

Stab(*I*) has a subgroup of finite index, which stabilizes a nontrivial sublattice of \mathbb{Z}^n .

Jan Verschelde (UIC)

from the paper of George M. Bergman

Theorem (theorem 1 of Bergman 1971)

Let I be a nontrivial ideal in $K[\mathbf{x}^{\pm 1}]$, and $H \subseteq GL(n, \mathbb{Z})$ the stabilizer subgroup of I. Then H has a subgroup H_0 of finite index, which stabilizes a nontrivial subgroup of \mathbb{Z}^n (equivalently, which can be put into block-triangular form

$$\left(\begin{array}{c|c} \star & \star \\ \hline 0 & \star \end{array}\right)$$

in $GL(n, \mathbb{Z})$).

A D N A B N A B N A B N

Bergman's conceptual proof for $K = \mathbb{C}$

Consider $V \subseteq (\mathbb{C} \setminus \{0\})^n$ defined by some nontrivial ideal.

- Look at limiting values of ratios log |x₁| : log |x₂| : · · · : log |x_n| as x ∈ V becomes large.
 Identify this set of ratios with the (n − 1)-sphere S^{n−1}.
- 2 The limiting ratios of logarithms lies in a finite union of proper great subspheres on S^{n-1} , having rational defining parameters.
- Assuming this, note:
 - the intersection of two such finite unions of subspheres will again be one;
 - the family of all finite unions of great subspheres has a descending chain condition.

There exists a unique finite union U of subspheres minimal for the property of containing all "logarithmic limit-points at infinity" of V. If V has positive dimension, U must be nonempty.

the proof continued

- The space of our *n*-tuples of logarithms ℝⁿ arises as the dual of Zⁿ, that is: Hom_{groups}(Zⁿ, ℝ). Thus we get a natural action of GL(n, Z) on ℝⁿ, and so on Sⁿ⁻¹.
- Clearly *U* will be invariant under the induced action of the stabilizer subgroup, *H*, of *I*.
 By duality, we obtain from the great subspheres of *U* a family Q of nontrivial subgroups of Zⁿ, also invariant under *H*.

Q.E.D.

The claim that logarithmic points at infinity of *V* lie in a finite union of proper great subspheres of S^{n-1} , consider the support *A* of any nonzero $f \in I$. At $\mathbf{z} \in V$: $f(\mathbf{z}) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{z}^{\mathbf{a}} = 0$.

At each point of V, at least two terms of the sum (the largest ones) must be of the same order of magnitude.

Each log $|\mathbf{z}|$ lies in one of the finite family of "planks" in \mathbb{R}^n .

(日本) (日本) (日本) 日

a lemma

Denote the standard unit vectors by **e**₁, **e**₂, ...

Lemma (Lemma 2.2.9)

- Given any $\mathbf{v} \in \mathbb{Z}^n$ with $gcd(|v_1|, |v_2|, \dots, |v_n|) = 1$. There is a matrix $U \in GL(n, \mathbb{Z})$: $U\mathbf{v} = \mathbf{e}_1$.
- 2 Let L be a rank k subgroup of Zⁿ with Zⁿ/L torsion-free. There is a matrix U ∈ GL(n, Z) with UL equal to the subgroup generated by e₁, e₂, ..., e_k.

To prove the first statement:

$$\begin{array}{rcl} 1 & = & \gcd(v_1, v_2) \\ & = & av_1 + bv_2 \end{array} \quad \left[\begin{array}{cc} a & b \\ -v_2 & v_1 \end{array} \right] \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right] = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

Apply n - 1 times repeatedly for a vector of length n.

torsion-free

 $\mathbb Z$ -module: like a vector space we have scalar multiplication, but $\mathbb Z$ is a ring, not a field.

A group G is torsion-free if

 $\forall g \in G \setminus \{0\} \text{ and } \forall n \in \mathbb{Z} \setminus \{0\} : ng \neq 0.$

For $n \in \mathbb{Z} \setminus \{0\}$: $\mathbb{Z}/n\mathbb{Z}$ is not torsion-free.

3

イロト イヨト イヨト イヨト

an example of a lattice

$$L = \left[egin{array}{cc} 2 & 1 \ -1 & 2 \end{array}
ight] \quad G = \mathbb{Z}^2/L = \langle g_1, g_2
angle/ \left(egin{array}{cc} 2g_1 - g_2 = 0 \ g_1 + 2g_2 = 0 \end{array}
ight) \simeq \mathbb{Z}/5\mathbb{Z}$$

æ

- E

A B > 4
 B > 4
 B

proof of Lemma 2.2.9

Let *L* be a rank *k* subgroup of \mathbb{Z}^n with \mathbb{Z}^n/L torsion-free. There is a matrix $U \in GL(n, \mathbb{Z})$ with UL equal to the subgroup generated by $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_k$.

Let $A \in \mathbb{Z}^{k \times n}$ contains in its rows a basis for *L*.

 \mathbb{Z}^n/L is torsion-free \Rightarrow Smith Normal Form (SNF) of *A* is $A' = [I \ 0]$, where *I* is the identity matrix.

By SNF: A' = VAU', for $V \in GL(k, \mathbb{Z})$ and $U' \in GL(n, \mathbb{Z})$.

Because multiplication by invertible matrix does not change row span, the row span of VA is the same as the row span of L.

$$A' = [I \ 0] = [\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_k]^T = (VA)U'$$

As $A'^T = U'^T (VA)^T$, take $U = U'^T$.

Introduction

- Introduction to Tropical Geometry
- Unimodular Coordinate Transformations
 Zalessky's conjecture and Bergman's proof
 - the Smith Normal Form

Polyhedral Geometry

- inner normal fans
- Minkowski sum and common refinement

Gröbner Bases over a Field with a Valuation

- homogeneous ideals
- initial ideals and Gröbner bases

inner normal fans

Consider a Newton polygon with inner normals to its edges:

The inner normal fan is shown at the left:

- the rays are normal to the edges of the polygon;
- normals to the vertices of the polygon are contained in the strict interior of cones spanned by the rays.

polyhedral fans

Let *P* be an *n*-dimensional polytope. Denote the inner product by $\langle \cdot, \cdot \rangle$.

For $\mathbf{v} \neq \mathbf{0}$, the face of P defined by \mathbf{v} is

$$\operatorname{in}_{\mathbf{v}}(P) = \{ \mathbf{a} \in P \mid \langle \mathbf{a}, \mathbf{v} \rangle = \min_{\mathbf{b} \in P} \langle \mathbf{b}, \mathbf{v} \rangle \}.$$

The $in_{v}(\cdot)$ notation refers to inner forms of polynomials that are supported on faces of the Newton polytopes.

If we have a face *F* of *P*, then its *inner normal cone* is

$$\operatorname{cone}(F) = \{ \mathbf{v} \in \mathbb{R}^n \mid \operatorname{in}_{\mathbf{v}}(P) = F \}.$$

Passing from a face to its normal cone is like passing to the dual. Taking the dual of the dual brings us back to the original.

4 D N 4 B N 4 B N 4 B N

Minkowski sum and common refinement

The *Minkowski sum* of two sets $A, B \subset \mathbb{R}^n$:

$$A + B = \{ \mathbf{a} + \mathbf{b} \mid \mathbf{a} \in A, \mathbf{b} \in B \}.$$

The Newton polytope of the product of two polynomials is the Minkowski sum of their Newton polytopes.

The *common refinement* of two polyhedral fans \mathcal{F} and \mathcal{G} is

$$\mathcal{F} \wedge \mathcal{G} = \{ \ \mathbf{P} \cap \mathbf{Q} \mid \mathbf{P} \in \mathcal{F}, \mathbf{Q} \in \mathcal{Q} \}.$$

The normal fan of the Minkowski sum of two polytopes is the common refinement of their normal fans.

regular subdivisions

Let $P = \operatorname{conv}(\mathbf{a}_i, i = 1, 2, \dots, r) \subset \mathbb{R}^n$.

A regular subdivision of *P* is induced by $\mathbf{w} = (w_1, w_2, \dots, w_r)$:

$$\widehat{P} = \operatorname{conv}((\mathbf{a}_i, w_i) \mid i = 1, 2, \ldots, r).$$

Projecting the facets on the lower hull of P onto Rⁿ
 — dropping the last coordinate —
 gives the cells in the regular subdivision induced by w.

If all cells are simplices (spanned by exactly n + 1 points), then the regular subdivision is a regular triangulation.

A *polyhedral complex* C is a collection of polyhedra:

If a polyhedron $P \in C$, then for all \mathbf{v} : $\operatorname{in}_{\mathbf{v}}(P) \in C$.

2 If $P, Q \in C$, then either $P \cap Q = \emptyset$ or $P \cap Q$ is a face of both.

Polytopes, fans, and subdivisions are polyhedral complexes.

algorithms and software

The computation of the convex hull is a major problem solved by computational geometry. Problem specification:

- a collection of points in the plane or in space;
- a description of all faces of the convex hull.

Solution: apply the beneath-beyond or the giftwrapping method. Software: Qhull.

In optimization, the linear programming method solves

 $\min \langle \mathbf{C}, \mathbf{X} \rangle$
subject to $A\mathbf{X} \ge b$

Inner normals to facets are subject to a system of linear inequalities. Software: cddlib, lrs.

Introduction

- Introduction to Tropical Geometry
- Unimodular Coordinate Transformations
 Zalessky's conjecture and Bergman's proof
 - the Smith Normal Form

Polyhedral Geometry

- inner normal fans
- Minkowski sum and common refinement

Gröbner Bases over a Field with a Valuation

- homogeneous ideals
- initial ideals and Gröbner bases

the setup

- K : coefficient field, not required to be algebraically closed
- S: the polynomial ring $S = K[x_0, x_1, \dots, x_n]$
- I : a homogeneous ideal in S
- val : a nontrivial valuation, val : $\mathcal{K} \to \mathbb{R} \cup \{\infty\}$
- R: the valuation ring of K, $R = val(K^*)$, $K^* = K \setminus \{0\}$
- Γ_{val} : the value group is dense in ℝ, Γ_{val} = { x ∈ K : val(x) ≥ 0 }
 Γ_{val} = ℚ for Puiseux series ℂ{{t}}[x^{±1}]

$$f = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}, c_{\mathbf{a}} \in K^* \qquad \overline{f} = \sum_{\mathbf{a} \in A} \overline{c_{\mathbf{a}}} \mathbf{x}^{\mathbf{a}}.$$

initial forms

The *tropicalization* of $f = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}$ is a piecewise linear function

 $\operatorname{trop}(f): \mathbb{R}^{n+1} \to \mathbb{R}: \mathbf{w} \mapsto \operatorname{trop}(f)(\mathbf{w}) = \min(\operatorname{val}(c_{\mathbf{a}}) + \langle \mathbf{a}, \mathbf{w} \rangle, \mathbf{a} \in A).$

The *initial form* of *f* with respect to **w** is

$$\begin{split} & \operatorname{in}_{\mathbf{w}}(f) = \overline{t^{-\operatorname{trop}(f)(\mathbf{w})}f(t^{w_0}x_0, t^{w_1}x_1, \dots, t^{w_n}x_n)} \\ & = \overline{t^{-W}\sum_{\mathbf{a}\in A}c_{\mathbf{a}}t^{\langle \mathbf{a},\mathbf{w}\rangle}\mathbf{x}^{\mathbf{a}}}, \quad W = \operatorname{trop}(f)(\mathbf{w}) \\ & = \sum_{\substack{\mathbf{a}\in A\\ \operatorname{val}(c_{\mathbf{a}}) + \langle \mathbf{a},\mathbf{w}\rangle = W}} \overline{c_{\mathbf{a}}t^{-\operatorname{val}(c_{\mathbf{a}})}\mathbf{x}^{\mathbf{a}}} \\ & \in \mathbb{K}[x_0, x_1, \dots, x_n]. \end{split}$$

an example

$$f = (t + t^{2})x_{0} + 2t^{2}x_{1} + 3t^{4}x_{2} \in \mathbb{C}\left\{\{t\}\right\} [x_{0}^{\pm 1}, x_{1}^{\pm 1}, x_{2}^{\pm 1}]$$

$$c(t) \in \mathbb{C}\left\{\{t\}\right\}, c(t) = t^{b_{1}}(1 + O(t)): \operatorname{val}(c(t)) = b_{1}$$

$$W = \min(\operatorname{val}(c_{a}) + \langle \mathbf{a}, \mathbf{w} \rangle, \mathbf{a} \in A)$$

$$\operatorname{in}_{\mathbf{w}}(f) = \sum_{\substack{\mathbf{a} \in A \\ \operatorname{val}(c_{a}) + \langle \mathbf{a}, \mathbf{w} \rangle = W}} \overline{c_{a}t^{-\operatorname{val}(c_{a})}} \mathbf{x}^{a}$$

$$\operatorname{val}(c_{a}) + \langle \mathbf{a}, \mathbf{w} \rangle = W$$

$$\operatorname{If} \mathbf{w} = (0, 0, 0), \text{ then } W = 1 \text{ and } \operatorname{in}_{\mathbf{w}}(f) = \overline{(1 + t)x_{0}} = x_{0}.$$

$$\operatorname{If} \mathbf{w} = (4, 2, 0), \text{ then } W = 4 \text{ and } \operatorname{in}_{\mathbf{w}}(f) = 2x_{1} + 3x_{2}.$$

$$\operatorname{Note:} \operatorname{in}_{(2,1,0)}(f) = x_{0} + 2x_{1}.$$

æ

イロト イロト イヨト イヨト

initial ideals and Gröbner bases

The initial ideal of a homogeneous ideal I in S is

 $\operatorname{in}_{\mathbf{w}}(I) = \langle \operatorname{in}_{\mathbf{w}}(f) : f \in I \rangle \subset \mathbb{K}[x_0, x_1, \dots, x_n].$

A Gröbner basis for I with respect to w is

- a finite set $\mathcal{G} = \{ g_1, g_2, \dots, g_s \} \subset I$,
- with $\langle \operatorname{in}_{\mathbf{w}}(g_1), \operatorname{in}_{\mathbf{w}}(g_2), \dots, \operatorname{in}_{\mathbf{w}}(g_s) \rangle = \operatorname{in}_{\mathbf{w}}(I).$

Lemma (Lemma 2.4.2)

Let $I \subset K[x_0, x_1, ..., x_n]$ be a homogeneous ideal and fix $\mathbf{w} \in (\Gamma_{val})^{n+1}$. Then $in_{\mathbf{w}}(I)$ is homogeneous and we may choose a homogeneous Gröbner basis for *I*. Furthermore, if $g \in in_{\mathbf{w}}(I)$, then $g = in_{\mathbf{w}}(f)$ for some $f \in I$.

proof of the lemma

To see $in_{\mathbf{w}}(I)$ is homogeneous, consider $f = \sum_{i \ge 0} f_i \in S$, where $deg(f_i) = i$ and f_i is homogeneous.

 $\operatorname{in}_{\mathbf{w}}(f) = \sum_{\substack{i \ge 0 \\ \operatorname{trop}(f)(\mathbf{w}) = \operatorname{trop}(f_i)(\mathbf{w})}} \operatorname{in}_{\mathbf{w}}(f_i)$

Since each homogeneous component of f_i lives in I, $\operatorname{in}_{\mathbf{w}}(I)$ is generated by elements $\operatorname{in}_{\mathbf{w}}(f)$ with f homogeneous.

The initial form of a homogeneous polynomial is homogeneous, so this means that $in_w(I)$ is homogeneous.

As S is Noetherian, $in_{w}(I)$ is generated by a finite number of these $in_{w}(f)$, so the corresponding f form a Gröbner basis for I.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

proof of the last claim in the lemma

Furthermore, if $g \in in_{W}(I)$, then $g = in_{W}(f)$ for some $f \in I$.

$$g = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} x^{\mathbf{a}} \operatorname{in}_{\mathbf{w}}(f_{\mathbf{a}}) \in \operatorname{in}_{\mathbf{w}}(I), \quad \text{with } f_{\mathbf{a}} \in I, \text{ for all } \mathbf{a}$$

Then
$$g = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \operatorname{in}_{\mathbf{w}}(\mathbf{x}^{\mathbf{a}} f_{\mathbf{a}}).$$

• For each c_a , choose a lift $r_a \in R$ with $val(r_a) = 0$ and $\overline{r_a} = c_a$.

• Let
$$W_{\mathbf{a}} = \operatorname{trop}(f_{\mathbf{a}})(\mathbf{w}) + \langle \mathbf{w}, \mathbf{a} \rangle$$
.

• Let
$$f = \sum_{\mathbf{a} \in A} r_{\mathbf{a}} t^{-W_{\mathbf{a}}} \mathbf{x}^{\mathbf{a}} f_{\mathbf{a}}$$
.

Then, by construction, $\operatorname{trop}(f)(\mathbf{w}) = 0$ and $\operatorname{in}_{\mathbf{w}}(f) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \operatorname{in}_{\mathbf{w}}(f) = g$.