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Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of
Diane Maclagan and Bernd Sturmfels.

The web page
http://homepages.warwick.ac.uk/staff/D.Maclagan/

papers/TropicalBook.html

offers the pdf file of a book, dated 31 March 2014.

Today we look at some building blocks ...

This seminar is based on sections 2.4 and 2.5.
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Gröbner Bases over Fields with Valuations

The initial ideal of a homogeneous ideal I in K [x0, x1, . . . , xn] is
inw(I) = 〈 inw(f ) : f ∈ I 〉 ⊂ K[x0, x1, . . . , xn], K is the residue field.

A Gröbner basis for I with respect to w is

a finite set G = { g1, g2, . . . , gs } ⊂ I,

with 〈 inw(g1), inw(g2), . . . , inw(gs) 〉 = inw(I).

Lemma (Lemma 2.4.2)

Let I ⊂ K [x0, x1, . . . , xn] be a homogeneous ideal and fix w ∈ (Γval)
n+1.

Then inw(I) is homogeneous and we may choose a homogeneous
Gröbner basis for I.
Furthermore, if g ∈ inw(I), then g = inw(f ) for some f ∈ I.
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initial forms of initial forms of polynomials

The initial form of an initial form is an initial form.

Lemma (Lemma 2.4.5)

Fix f ∈ K [x0, x1, . . . , xn], w ∈ Γn+1
val , and v ∈ Qn+1.

There exists an ǫ > 0 such that for all δ ∈ Γval with 0 < δ < ǫ, we have

inv(inw(f )) = inw+δv(f ).

Lemma (Lemma 2.4.6)

Let I be a homogeneous ideal in K [x0, x1, . . . , xn] and fix w ∈ Γn+1
val .

There exists a v ∈ Qn+1 and ǫ > 0 such that
1 inv(inw(I)) and inw+ǫv(I) are monomial ideals; and
2 inv(inw(I)) ⊆ inw+ǫv(I).
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inv(inw(I)) is a monomial ideal

Proof that inv(inw(I)) is a monomial ideal:

Denote by Mv the monomial ideal 〈xa : xa ∈ inv(inw(I))〉, with v
chosen such that Mv is maximal, polynomial rings are Noetherian.

Suppose inv(inw(I)) is not a monomial ideal. Then there is a f ∈ I
such that none of the terms of inv(inw(f )) lies in Mv.

For generic u ∈ Qn+1, inu(inv(inw(f ))) is a monomial, with its
exponents corresponding to a vertex of the Newton polytope of f .

By Lemma 2.4.5, for some ǫ > 0, for all 0 < δ < ǫ:
inu(inv(inw(f ))) = inv+δu(inw(f )).

For sufficiently small δ, inv+δu(I) contains each generator of
〈xa : xa ∈ inv(inw(I))〉, as xa = inv(inw(f )) for some f ∈ I (this
follows from Lemma 2.4.5). But, by choice of v, Mv is maximal.

By this contradition, Mv = inv(inw(I)).
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inv(inw(I)) ⊆ inw+ǫv(I)

Proof that inv(inw(I)) ⊆ inw+ǫv(I):

Now we can write Mv = 〈xa1 , xa2 , . . . , xas〉, with chosen fi :
inv(inw(fi )) = xai , for i = 1, 2, . . . , s.

By Lemma 2.4.5, there is an ǫ > 0: inw+ǫv(fi) = xai for all i .
Therefore, for this ǫ we have inv(inw(I)) ⊆ inw+ǫv(I).

Choose v ∈ Qn+1:
1 inv(inw(I)) is a monomial ideal; and
2 Mǫ

v = 〈xa : xa ∈ inw+ǫv(I)〉 is maximal.

Suppose inw+ǫv(I) is not a monomial ideal.
Then there is an f ∈ I with no term of inw+ǫv(f ) in Mǫ

v.
As before we choose a u so that Mǫ

v ( Mǫ
v+δu for small δ > 0.

For small δ > 0: Mǫ
v+δu = 〈xa : xa ∈ inw+ǫv(I)〉, a contradiction.

Thus, inw+ǫv(I) is a monomial ideal and then inv(inw(I)) ⊆ inw+ǫv(I).
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Hilbert functions and dimension

SK = K [x0, x1, . . . , xn] and SK = K[x0, x1, . . . , xn] contain
homogeneous ideals I and their initial forms inw(I).

The Hilbert function N → N : d 7→ dim(SK /I)d

maps the degree d to the dimension of the quotient of the ring SK

modulo I, restricted to polynomials of degree d .

For large enough d , the Hilbert function is a polynomial in d .

Lemma (Lemma 2.4.7)

Let I be a homogeneous ideal in SK and let w ∈ Γn+1
val be such that

inw(I)d is spanned over K by its monomials.
The monomials of degree d that are not in inw(I) form
a K -basis for (S/I)d .
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linear independence

Let Bd be the set of monomials of degree d not in inw(I).

Suppose Bd is linearly dependent over K :

There is a f =
∑

a∈A

caxa ∈ Id with xa 6∈ inw(I), as xa ∈ Bd .

However, inw(f ) ∈ inw(I)d , every term of inw(f ) is in inw(I)d

which contradicts the construction of f .

The linear independence of Bd implies

dimK inw(I)d ≥ dimK (I)d because |Bd | =

(
n + d

n

)
− dim inw(I)d .
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Bd forms a K -basis
By Lemma 2.4.2, for each monomial xa ∈ inw(I)d , we can choose a
fa ∈ Id with inw(fa) = xa. Consider { fa : xa ∈ inw(I)d }.

Suppose { fa : xa ∈ inw(I)d } is not linearly independent in SK /I:

There are γa ∈ K ∗:
∑

a∈A

γafa = 0.

Write fa = xa +
∑

b

cabxb and let u be where val(γa) + 〈w, a〉 is

minimal for all a ∈ A with xa ∈ inw(I)d .

Then γu +
∑

b 6=u

γbcbu = 0, so there is a v 6= u with

val(γv) + val(cvu) ≤ val(γu).

But then val(γv) + val(cvu) + 〈w, u〉 ≤ val(γu) + 〈w, u〉 and
val(γu) + 〈w, u〉 ≤ val(γv) + 〈w, v〉, which contradicts inw(fv) = xv.

This shows dimK Id ≥ dimK inw(I)d . Thus
dimK (SK /I)d = dimK(SK/inw(I))d , and Bd is a K -basis for (SK /I)d .
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two corollaries

Corollary (Corollary 2.4.8)

For any w ∈ Γn+1
val and any homogeneous ideal I in SK , the Hilbert

function of I agrees with that of its initial ideal inw(I) in SK, i.e.:

dimK (SK /I)d = dimK(SK/inw(I))d for all d ≥ 0.

Thus the Krull dimensions of the rings SK /I and SK/inw(I) coincide.

The Krull dimension of a ring is the supremum of the lengths of chains
of distinct prime ideals in the ring.

Corollary (Corollary 2.4.9)
Let I be a homogeneous ideal in K [x0, x1, . . . , xn].
For any w ∈ Γn+1

val and v ∈ Qn+1 there exists ǫ > 0 such that

inv(inw(I)) = inw+δv(I) for all 0 < δ < ǫ with δv ∈ Γn+1
val .
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defining polyhedra

For a homogeneous ideal I ⊂ K [x0, x1, . . . , xn] and for w ∈ Γn+1
val

we set
CI [w] = { v ∈ Γn+1

val : inv(I) = inw(I) }.

Let CI[w] be the closure of CI[w] in Rn+1 in the Euclidean topology.

Consider a Gröbner basis {g1, g2, . . . , gs} of I with respect to w,
and let inw(gi) = xui , for gi =

∑

a∈Nn+1

ci ,axa.

If CI[w] has the inequality description

{ z ∈ Rn+1 : 〈ui , z〉 ≤ val(ci ,a) + 〈a, z〉, for 1 ≤ i ≤ s, a ∈ Nn+1 },

then CI[w] is a Γval-rational polyhedron.

A polyhedron P = { x ∈ Rn : Ax ≤ b } is Γ-rational
if A ∈ Qd×n and b ∈ Γd .
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proof of the inequality description

Proposition (Proposition 2.5.2)

The set CI [w] is a Γ-rational polyhedron which contains the line
R(1, 1, . . . , 1) as its largest affine subspace.
If inw(I) is not a monomial ideal, then there exists w′ ∈ Γn+1

val such that
inw′(I) is a monomial ideal and CI[w] is a proper face of CI[w′].

Proof:

By Lemma 2.4.6, ∃v ∈ Qn+1, inv(inw(I)) is a monomial ideal.

By Corollary 2.4.9: inw+ǫv(I) = inv(inw(I)) for ǫ > 0.
Fix such ǫ, let w′ = w + ǫv and inw′(I) = 〈xu1, xu2 , . . . , xus〉.

By Lemma 2.4.7, the monomials not in inw′(I) of degree
d = deg(xui ) form a basis for (S/I)d .
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proof continued

∃v ∈ Qn+1, inv(inw(I)) is a monomial ideal, inw+ǫv(I) = inv(inw(I))
for ǫ > 0, w′ = w + ǫv, inw′(I) = 〈xu1, xu2 , . . . , xus〉. The monomials
not in inw′(I) of degree d = deg(xui ) form a basis for (S/I)d .

Let g′
i be the result of writing xui in this basis,

so no monomial occurring in g′
i lies in inw′(I).

We write civ for the coefficient of xv in g′
i .

The polynomial gi = xui − g′
i is in I.

Since inv(inw(gi)) must lie in inw′(I), we have inv(inw(gi)) = xui ,
and thus inw′(gi) = xui .

The polynomials {g1, g2, . . . , gs} form a Gröbner basis for I
with respect to w′.
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the inequality description

For CI[w′] = { w′′ ∈ Γn+1
val : inw′′(I) = inw′(I) }, we prove that CI [w′] is

P = { z ∈ Rn+1 : 〈ui , z〉 ≤ val(ci ,a) + 〈a, z〉, for 1 ≤ i ≤ s, a ∈ Nn+1 }.

Suppose w̃ ∈ CI[w′],

but one of the inequalities 〈ui , z〉 ≤ val(ci ,a) + 〈a, z〉 is violated.

For that index i , we have inew(gi) 6= xui .

Since inw′(I) = inew(I) is a monomial ideal,
every term of inew(gi) lies in inew(I),

which contradicts the construction of gi . Thus CI[w′] ⊆ P.
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the reverse inclusion

For CI[w′] = { w′′ ∈ Γn+1
val : inw′′(I) = inw′(I) }, to show that CI[w′]

contains

P = { z ∈ Rn+1 : 〈ui , z〉 ≤ val(ci ,a) + 〈a, z〉, for 1 ≤ i ≤ s, a ∈ Nn+1 },

assume 〈ui , w̃〉 < val(ci ,a) + 〈a, w̃〉, for all i .

Then inew(gi) = xui for all i ,

and hence: inew(I) ⊆ inw′(I).

The two ideals have the same Hilbert function, so they are equal.

We conclude w̃ ∈ CI[w′].
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CI[w] is a proper face of CI[w′]

Recall w′ = w + ǫv, inw′(I) = 〈xu1, xu2 , . . . , xus〉, and {g1, g2, . . . , gs}
forms a Gröbner basis for I with respect to w′, so inw′(gi) = xui .
This shows CI [w] ⊂ CI [w′].

CI[w] being a Γval-polyhedron is implied by being a face of CI[w′].

Note that { inw(g1), inw(g2), . . . , inw(gs) } is a Gröbner basis for inw(I)
with respect to v. If w̃ ∈ Γn+1

val satisfies inew(I) = inw(I), then
inew(gi) = inw(gi), for all i . Otherwise, inew(gi) would still have xui in its
support or inv(inew(I)) would not be equal to the monomial ideal inw′(I).

But then inew(gi) − inw(gi) ∈ inw(I), and this polynomial does not
contain any monomials from inw′(I), contradicting inv(inw(I)) = inw′(I).

We conclude that CI[w] is the set of points z in the cone CI [w′] that
satisfy 〈ui , z〉 = val(ci ,a) + 〈a, z〉 whenever xa appears in inw(gi).
So CI [w] is a face of CI [w′].
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the lineality space R1 = R(1, 1, . . . , 1)

Finally, for any homogeneous polynomial f ∈ K [x0, x1, . . . , xn]
we have inw(f ) = inw+λ1(f ) for all λ ∈ Γval.

Since all initial ideals of I are generated by homogeneous polynomials,
by Lemma 2.4.2, this implies inw(I) = inw+λ1(I) for all λ ∈ Γval.

Therefore, CI [w] = CI [w] + R1.

The lineality space of the polyhedron CI[w] contains the line R1.
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