Initial Forms and Gröbner Polyhedra

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
http://www.math.uic.edu/~jan
jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Gröbner Complexes and Tropical Bases

(1)

Introduction

- Introduction to Tropical Geometry
(2) Initial Forms of Initial Forms
- Gröbner bases over fields with valuations
- initial ideals as monomial ideals
- computing the dimension
(3) Gröbner Polyhedra
- defining polyhedra
- the inequality description

Initial Forms and Gröbner Polyhedra

(9) Introduction

- Introduction to Tropical Geometry
(2) Initial Forms of Initial Forms
- Gröbner bases over fields with valuations
- initial ideals as monomial ideals
- computing the dimension

3) Gröbner Polyhedra

- defining polyhedra
- the inequality description

Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of Diane Maclagan and Bernd Sturmfels.

The web page
http://homepages.warwick.ac.uk/staff/D.Maclagan/
papers/TropicalBook.html
offers the pdf file of a book, dated 31 March 2014.
Today we look at some building blocks ...
This seminar is based on sections 2.4 and 2.5.

Initial Forms and Gröbner Polyhedra

(9) Introduction

- Introduction to Tropical Geometry
(2) Initial Forms of Initial Forms
- Gröbner bases over fields with valuations
- initial ideals as monomial ideals
- computing the dimension
(3) Gröbner Polyhedra
- defining polyhedra
- the inequality description

Gröbner Bases over Fields with Valuations

The initial ideal of a homogeneous ideal I in $K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is $\mathrm{in}_{\mathbf{w}}(I)=\left\langle\operatorname{in}_{\mathbf{w}}(f): f \in I\right\rangle \subset \mathbb{K}\left[x_{0}, x_{1}, \ldots, x_{n}\right], \mathbb{K}$ is the residue field.

A Gröbner basis for I with respect to \mathbf{w} is

- a finite set $\mathcal{G}=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\} \subset I$,
- with $\left\langle\operatorname{in}_{\mathbf{w}}\left(g_{1}\right), \mathrm{in}_{\mathbf{w}}\left(g_{2}\right), \ldots, \mathrm{in}_{\mathbf{w}}\left(g_{s}\right)\right\rangle=\mathrm{in}_{\mathbf{w}}(I)$.

Lemma (Lemma 2.4.2)

Let $I \subset K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be a homogeneous ideal and fix $\mathbf{w} \in\left(\Gamma_{\text {val }}\right)^{n+1}$. Then $\mathrm{in}_{\mathrm{w}}(I)$ is homogeneous and we may choose a homogeneous Gröbner basis for I.
Furthermore, if $g \in \mathrm{in}_{\mathbf{w}}(I)$, then $g=\mathrm{in}_{\mathbf{w}}(f)$ for some $f \in I$.

initial forms of initial forms of polynomials

The initial form of an initial form is an initial form.
Lemma (Lemma 2.4.5)
Fix $f \in K\left[x_{0}, x_{1}, \ldots, x_{n}\right], \mathbf{w} \in \Gamma_{\text {val }}^{n+1}$, and $\mathbf{v} \in \mathbb{Q}^{n+1}$.
There exists an $\epsilon>0$ such that for all $\delta \in \Gamma_{\text {val }}$ with $0<\delta<\epsilon$, we have

$$
\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(f)\right)=\mathrm{in}_{\mathbf{w}+\delta \mathbf{v}}(f) .
$$

Lemma (Lemma 2.4.6)

Let I be a homogeneous ideal in $K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and fix $\mathbf{w} \in \Gamma_{\text {val }}^{n+1}$. There exists a $\mathbf{v} \in \mathbb{Q}^{n+1}$ and $\epsilon>0$ such that
(3) $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)$ and $\mathrm{in}_{\mathbf{w}+\mathrm{ev}}(I)$ are monomial ideals; and
(2) $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathrm{w}}(I)\right) \subseteq \mathrm{in}_{\mathrm{w}+\mathrm{\epsilon}}(I)$.

$\mathrm{in}_{\mathrm{v}}\left(\mathrm{in}_{\mathrm{w}}(I)\right)$ is a monomial ideal

Proof that $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)$ is a monomial ideal:

- Denote by $M_{\mathbf{v}}$ the monomial ideal $\left\langle\mathbf{x}^{\mathbf{a}}: \mathbf{x}^{\mathbf{a}} \in \mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)\right\rangle$, with \mathbf{v} chosen such that M_{v} is maximal, polynomial rings are Noetherian.
- Suppose $\mathrm{in}_{\mathrm{v}}\left(\mathrm{in}_{\mathrm{w}}(I)\right)$ is not a monomial ideal. Then there is a $f \in I$ such that none of the terms of $\mathrm{in}_{\mathrm{v}}\left(\mathrm{in}_{\mathbf{w}}(f)\right)$ lies in M_{v}.
- For generic $\mathbf{u} \in \mathbb{Q}^{n+1}, \mathrm{in}_{\mathbf{u}}\left(\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(f)\right)\right)$ is a monomial, with its exponents corresponding to a vertex of the Newton polytope of f. By Lemma 2.4.5, for some $\epsilon>0$, for all $0<\delta<\epsilon$:

$$
\mathrm{in}_{\mathbf{u}}\left(\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(f)\right)\right)=\mathrm{in}_{\mathbf{v}+\delta \mathbf{u}}\left(\mathrm{in}_{\mathbf{w}}(f)\right) .
$$

- For sufficiently small $\delta, \mathrm{in}_{\mathbf{v}+\delta \mathbf{u}}(I)$ contains each generator of $\left\langle\mathbf{x}^{\mathbf{a}}: \mathbf{x}^{\mathbf{a}} \in \mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)\right\rangle$, as $\mathbf{x}^{\mathbf{a}}=\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(f)\right)$ for some $f \in I$ (his follows from Lemma 2.4.5). But, by choice of $\mathbf{v}, M_{\mathbf{v}}$ is maximal.
By this contradition, $M_{\mathbf{v}}=\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)$.

$\operatorname{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right) \subseteq \mathrm{in}_{\mathbf{w}+\epsilon \mathbf{v}}(I)$

Proof that $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right) \subseteq \mathrm{in}_{\mathbf{w}+\mathrm{ev}}(I)$:

- Now we can write $M_{\mathbf{v}}=\left\langle\mathbf{x}^{\mathbf{a}_{1}}, \mathbf{x}^{\mathbf{a}_{2}}, \ldots, \mathbf{x}^{\mathbf{a}_{s}}\right\rangle$, with chosen f_{i} : $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}\left(f_{i}\right)\right)=\mathbf{x}^{\mathbf{a}_{i}}$, for $i=1,2, \ldots, s$.
- By Lemma 2.4.5, there is an $\epsilon>0: \operatorname{in}_{\mathbf{w}+\epsilon \mathbf{V}}\left(f_{i}\right)=\mathbf{x}^{\mathbf{a}_{i}}$ for all i. Therefore, for this ϵ we have $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right) \subseteq \mathrm{in}_{\mathbf{w}+\epsilon \mathbf{v}}(I)$.
- Choose $\mathbf{v} \in \mathbb{Q}^{n+1}$:
(1) $\mathrm{in}_{\mathrm{v}}\left(\mathrm{in}_{\mathrm{w}}(I)\right)$ is a monomial ideal; and
(2) $M_{\mathbf{v}}^{\epsilon}=\left\langle\mathbf{x}^{\mathbf{a}}: \mathbf{x}^{\mathbf{a}} \in \mathrm{in}_{\mathbf{w}+\epsilon \mathbf{v}}(I)\right\rangle$ is maximal.
- Suppose $\mathrm{in}_{\mathbf{w}+\epsilon \mathbf{v}}(I)$ is not a monomial ideal.

Then there is an $f \in I$ with no term of $\mathrm{in}_{\mathbf{w}+\epsilon \mathbf{V}}(f)$ in $M_{\mathbf{v}}^{\epsilon}$. As before we choose a \mathbf{u} so that $M_{\mathbf{v}}^{\epsilon} \subsetneq M_{\mathbf{v}+\delta \mathbf{u}}^{\epsilon}$ for small $\delta>0$. For small $\delta>0: M_{\mathbf{v}+\delta \mathbf{u}}^{\epsilon}=\left\langle\mathbf{x}^{\mathbf{a}}: \mathbf{x}^{\mathbf{a}} \in \mathrm{in}_{\mathbf{w}+\epsilon \mathbf{v}}(I)\right\rangle$, a contradiction.

Thus, $\mathrm{in}_{\mathbf{w}+\epsilon \mathbf{V}}(I)$ is a monomial ideal and then $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right) \subseteq \mathrm{in}_{\mathbf{w}+\epsilon \mathbf{v}}(I)$.

Hilbert functions and dimension

$S_{K}=K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and $S_{\mathbb{K}}=\mathbb{K}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ contain homogeneous ideals I and their initial forms $\operatorname{in}_{\mathbf{w}}(I)$.

The Hilbert function $\mathbb{N} \rightarrow \mathbb{N}: d \mapsto \operatorname{dim}\left(S_{K} / I\right)_{d}$ maps the degree d to the dimension of the quotient of the ring S_{K} modulo I, restricted to polynomials of degree d.

For large enough d, the Hilbert function is a polynomial in d.
Lemma (Lemma 2.4.7)
Let I be a homogeneous ideal in S_{K} and let $\mathbf{w} \in \Gamma_{\text {val }}^{n+1}$ be such that $\mathrm{in}_{\mathrm{w}}(I)_{d}$ is spanned over K by its monomials.
The monomials of degree d that are not in $\mathrm{in}_{\mathrm{w}}(I)$ form a K-basis for $(S / I)_{d}$.

linear independence

Let \mathcal{B}_{d} be the set of monomials of degree d not in in $_{\mathbf{w}}(I)$.
Suppose \mathcal{B}_{d} is linearly dependent over K :

- There is a $f=\sum_{\mathbf{a} \in A} c_{\mathbf{a}} x^{\mathbf{a}} \in I_{d}$ with $\mathbf{x}^{\mathbf{a}} \notin \mathrm{in}_{\mathbf{w}}(I)$, as $\mathbf{x}^{\mathbf{a}} \in \mathcal{B}_{d}$.
- However, $\mathrm{in}_{\mathbf{w}}(f) \in \mathrm{in}_{\mathbf{w}}(I)_{d}$, every term of $\mathrm{in}_{\mathbf{w}}(f)$ is in $\mathrm{in}_{\mathbf{w}}(I)_{d}$ which contradicts the construction of f.

The linear independence of \mathcal{B}_{d} implies
$\operatorname{dim}_{\mathbb{K}} \mathrm{in}_{\mathbf{w}}(I)_{d} \geq \operatorname{dim}_{K}(I)_{d} \quad$ because $\quad\left|\mathcal{B}_{d}\right|=\binom{n+d}{n}-\operatorname{dimin}_{\mathbf{W}}(I)_{d}$.

\mathcal{B}_{d} forms a K-basis

By Lemma 2.4.2, for each monomial $\mathbf{x}^{\mathbf{a}} \in \mathrm{in}_{\mathbf{w}}(I)_{d}$, we can choose a $f_{\mathbf{a}} \in I_{d}$ with $\operatorname{in}_{\mathbf{w}}\left(f_{\mathbf{a}}\right)=\mathbf{x}^{\mathbf{a}}$. Consider $\left\{f_{\mathbf{a}}: \mathbf{x}^{\mathbf{a}} \in \mathrm{in}_{\mathbf{w}}(I)_{d}\right\}$.

Suppose $\left\{f_{\mathbf{a}}: \mathbf{x}^{\mathbf{a}} \in \mathrm{in}_{\mathbf{w}}(I)_{d}\right\}$ is not linearly independent in S_{K} / I :

- There are $\gamma_{\mathbf{a}} \in K^{*}: \sum_{\mathbf{a} \in A} \gamma_{\mathbf{a}} f_{\mathbf{a}}=0$.
- Write $f_{\mathbf{a}}=\mathbf{x}^{\mathbf{a}}+\sum_{\mathbf{b}} c_{\mathbf{a b}} \mathbf{x}^{\mathbf{b}}$ and let \mathbf{u} be where $\operatorname{val}\left(\gamma_{\mathbf{a}}\right)+\langle\mathbf{w}, \mathbf{a}\rangle$ is minimal for all $\mathbf{a} \in A$ with $\mathbf{x}^{\mathbf{a}} \in \mathrm{in}_{\mathbf{w}}(I)_{d}$.
- Then $\gamma_{\mathbf{u}}+\sum_{\mathbf{b} \neq \mathbf{u}} \gamma_{\mathbf{b}} c_{\mathbf{b} \mathbf{u}}=0$, so there is a $\mathbf{v} \neq \mathbf{u}$ with

$$
\operatorname{val}\left(\gamma_{\mathbf{v}}\right)+\operatorname{val}\left(c_{\mathbf{v u}}\right) \leq \operatorname{val}\left(\gamma_{\mathbf{u}}\right)
$$

- But then $\operatorname{val}\left(\gamma_{\mathbf{v}}\right)+\operatorname{val}\left(c_{\mathbf{v u}}\right)+\langle\mathbf{w}, \mathbf{u}\rangle \leq \operatorname{val}\left(\gamma_{\mathbf{u}}\right)+\langle\mathbf{w}, \mathbf{u}\rangle$ and $\operatorname{val}\left(\gamma_{\mathbf{u}}\right)+\langle\mathbf{w}, \mathbf{u}\rangle \leq \operatorname{val}\left(\gamma_{\mathbf{v}}\right)+\langle\mathbf{w}, \mathbf{v}\rangle$, which contradicts $\operatorname{in}_{\mathbf{w}}\left(f_{\mathbf{v}}\right)=\mathbf{x}^{\mathbf{v}}$.

This shows $\operatorname{dim}_{K} I_{d} \geq \operatorname{dim}_{\mathbb{K}} \mathrm{in}_{\mathbf{w}}(I)_{d}$. Thus $\operatorname{dim}_{K}\left(S_{K} / I\right)_{d}=\operatorname{dim}_{\mathbb{K}}\left(S_{\mathbb{K}} / \mathrm{in}_{\mathbf{w}}(I)\right)_{d}$, and \mathcal{B}_{d} is a K-basis for $\left(S_{K} / I\right)_{d}$.

two corollaries

Corollary (Corollary 2.4.8)

For any $\mathbf{w} \in \Gamma_{\text {val }}^{n+1}$ and any homogeneous ideal I in S_{K}, the Hilbert function of I agrees with that of its initial ideal $\mathrm{in}_{\mathbf{w}}(I)$ in $S_{\mathbb{K}}$, i.e.:

$$
\operatorname{dim}_{K}\left(S_{K} / I\right)_{d}=\operatorname{dim}_{\mathbb{K}}\left(S_{\mathbb{K}} / \mathrm{in}_{\mathbf{W}}(I)\right)_{d} \quad \text { for all } d \geq 0 .
$$

Thus the Krull dimensions of the rings S_{K} / I and $S_{\mathbb{K}} / \mathrm{in}_{\mathbf{W}}(I)$ coincide.
The Krull dimension of a ring is the supremum of the lengths of chains of distinct prime ideals in the ring.

Corollary (Corollary 2.4.9)

Let I be a homogeneous ideal in $K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. For any $\mathbf{w} \in \Gamma_{\text {val }}^{n+1}$ and $\mathbf{v} \in \mathbb{Q}^{n+1}$ there exists $\epsilon>0$ such that

$$
\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)=\mathrm{in}_{\mathbf{w}+\delta \mathbf{v}}(I) \quad \text { for all } 0<\delta<\epsilon \text { with } \delta \mathbf{v} \in \Gamma_{\text {val }}^{n+1} .
$$

Initial Forms and Gröbner Polyhedra

(4) Introduction

- Introduction to Tropical Geometry
(2) Initial Forms of Initial Forms
- Gröbner bases over fields with valuations
- initial ideals as monomial ideals
- computing the dimension
(3) Gröbner Polyhedra
- defining polyhedra
- the inequality description

defining polyhedra

For a homogeneous ideal $I \subset K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and for $\mathbf{w} \in \Gamma_{\text {val }}^{n+1}$ we set

$$
C_{l}[\mathbf{w}]=\left\{\mathbf{v} \in \Gamma_{\text {val }}^{n+1}: \mathrm{in}_{\mathbf{v}}(I)=\mathrm{in}_{\mathbf{w}}(I)\right\} .
$$

Let $\overline{C_{l}[\mathbf{w}]}$ be the closure of $C_{l}[\mathbf{w}]$ in \mathbb{R}^{n+1} in the Euclidean topology. Consider a Gröbner basis $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ of $/$ with respect to \mathbf{w}, and let $\mathrm{in}_{\mathbf{w}}\left(g_{i}\right)=\mathbf{x}^{\mathbf{u}_{i}}$, for $g_{i}=\sum_{\mathbf{a} \in \mathbb{N}^{n+1}} c_{i, \mathbf{a}} \mathbf{x}^{\mathbf{a}}$.
If $\overline{C_{l}[\mathbf{w}]}$ has the inequality description

$$
\left\{\mathbf{z} \in \mathbb{R}^{n+1}:\left\langle\mathbf{u}_{i}, \mathbf{z}\right\rangle \leq \operatorname{val}\left(c_{i, \mathbf{a}}\right)+\langle\mathbf{a}, \mathbf{z}\rangle, \text { for } 1 \leq i \leq s, \mathbf{a} \in \mathbb{N}^{n+1}\right\},
$$

then $\overline{C_{l}[\mathbf{w}]}$ is a $\Gamma_{\text {val }}$ rational polyhedron.
A polyhedron $P=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}\right\}$ is Γ-rational if $A \in \mathbb{Q}^{d \times n}$ and $\mathbf{b} \in \Gamma^{d}$.

proof of the inequality description

Proposition (Proposition 2.5.2)

The set $\overline{C_{l}[\mathbf{w}]}$ is a 「-rational polyhedron which contains the line $\mathbb{R}(1,1, \ldots, 1)$ as its largest affine subspace. If $\mathrm{in}_{\mathbf{w}}(I)$ is not a monomial ideal, then there exists $\mathbf{w}^{\prime} \in \Gamma_{\mathrm{val}}^{n+1}$ such that $\mathrm{in}_{\mathbf{w}^{\prime}}(I)$ is a monomial ideal and $\overline{C_{l}[\mathbf{w}]}$ is a proper face of $\overline{C_{l}\left[\mathbf{w}^{\prime}\right]}$.

Proof:

- By Lemma 2.4.6, $\exists \mathbf{v} \in \mathbb{Q}^{n+1}, \mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)$ is a monomial ideal.
- By Corollary 2.4.9: $\mathrm{in}_{\mathbf{w}+\epsilon \mathbf{V}}(I)=\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)$ for $\epsilon>0$. Fix such ϵ, let $\mathbf{w}^{\prime}=\mathbf{w}+\epsilon \mathbf{V}$ and $\mathrm{in}_{\mathbf{w}^{\prime}}(I)=\left\langle\mathbf{x}^{\mathbf{u}_{1}}, \mathbf{x}^{\mathbf{u}_{2}}, \ldots, \mathbf{x}^{\mathbf{u}_{s}}\right\rangle$.
- By Lemma 2.4.7, the monomials not in $\mathrm{in}_{\mathbf{w}^{\prime}}(I)$ of degree $d=\operatorname{deg}\left(\mathbf{x}^{\mathbf{u}_{i}}\right)$ form a basis for $(S / I)_{d}$.

proof continued

$\exists \mathbf{v} \in \mathbb{Q}^{n+1}, \operatorname{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)$ is a monomial ideal, $\mathrm{in}_{\mathbf{w}+\epsilon \mathbf{v}}(I)=\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)$ for $\epsilon>0, \mathbf{w}^{\prime}=\mathbf{w}+\epsilon \mathbf{V}$, in $_{\mathbf{w}^{\prime}}(I)=\left\langle\mathbf{x}^{\mathbf{u}_{1}}, \mathbf{x}^{\mathbf{u}_{2}}, \ldots, \mathbf{x}^{\mathbf{u}_{s}}\right\rangle$. The monomials not in $\mathrm{in}_{\mathbf{w}^{\prime}}(I)$ of degree $d=\operatorname{deg}\left(\mathbf{x}^{\mathbf{u}_{i}}\right)$ form a basis for $(S / I)_{d}$.

- Let g_{i}^{\prime} be the result of writing $\mathbf{x}^{\mathbf{u}_{i}}$ in this basis, so no monomial occurring in g_{i}^{\prime} lies in $\mathrm{in}_{\mathbf{w}^{\prime}}(I)$.
- We write $c_{i v}$ for the coefficient of $\mathbf{x}^{\mathbf{v}}$ in g_{i}^{\prime}.
- The polynomial $g_{i}=\mathbf{x}^{\mathbf{u}_{i}}-g_{i}^{\prime}$ is in l.
- Since $\operatorname{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}\left(g_{i}\right)\right)$ must lie in $\mathrm{in}_{\mathbf{w}^{\prime}}(I)$, we have $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}\left(g_{i}\right)\right)=\mathbf{x}^{\mathbf{u}_{i}}$, and thus $\mathrm{in}_{\mathbf{w}^{\prime}}\left(g_{i}\right)=\mathbf{x}^{\mathbf{u}_{i}}$.
- The polynomials $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ form a Gröbner basis for I with respect to \mathbf{w}^{\prime}.

the inequality description

For $C_{l}\left[\mathbf{w}^{\prime}\right]=\left\{\mathbf{w}^{\prime \prime} \in \Gamma_{\text {val }}^{n+1}: \operatorname{in}_{\mathbf{w}^{\prime \prime}}(I)=\operatorname{in}_{\mathbf{w}^{\prime}}(I)\right\}$, we prove that $\overline{C_{l}\left[\mathbf{w}^{\prime}\right]}$ is

$$
P=\left\{\mathbf{z} \in \mathbb{R}^{n+1}:\left\langle\mathbf{u}_{i}, \mathbf{z}\right\rangle \leq \operatorname{val}\left(c_{i, \mathbf{a}}\right)+\langle\mathbf{a}, \mathbf{z}\rangle, \text { for } 1 \leq i \leq s, \mathbf{a} \in \mathbb{N}^{n+1}\right\}
$$

Suppose $\widetilde{\mathbf{w}} \in C_{l}\left[\mathbf{w}^{\prime}\right]$,

- but one of the inequalities $\left\langle\mathbf{u}_{i}, \mathbf{z}\right\rangle \leq \operatorname{val}\left(c_{i, \mathbf{a}}\right)+\langle\mathbf{a}, \mathbf{z}\rangle$ is violated.
- For that index i, we have $\mathrm{in}_{\widetilde{\mathbf{w}}}\left(g_{i}\right) \neq \mathbf{x}^{\mathbf{u}_{i}}$.
- Since $\mathrm{in}_{\mathbf{w}^{\prime}}(I)=\mathrm{in}_{\widetilde{\mathrm{w}}}(I)$ is a monomial ideal, every term of $\mathrm{in}_{\widetilde{\mathbf{w}}}\left(g_{i}\right)$ lies in $\mathrm{in}_{\widetilde{\mathbf{w}}}(I)$,
which contradicts the construction of g_{i}. Thus $\overline{C_{l}\left[\mathbf{w}^{\prime}\right]} \subseteq P$.

the reverse inclusion

For $C_{l}\left[\mathbf{w}^{\prime}\right]=\left\{\mathbf{w}^{\prime \prime} \in \Gamma_{\text {val }}^{n+1}: \operatorname{in}_{\mathbf{w}^{\prime \prime}}(I)=\operatorname{in}_{\mathbf{w}^{\prime}}(I)\right\}$, to show that $\overline{C_{l}\left[\mathbf{w}^{\prime}\right]}$ contains

$$
P=\left\{\mathbf{z} \in \mathbb{R}^{n+1}:\left\langle\mathbf{u}_{i}, \mathbf{z}\right\rangle \leq \operatorname{val}\left(c_{i, \mathbf{a}}\right)+\langle\mathbf{a}, \mathbf{z}\rangle, \text { for } 1 \leq i \leq s, \mathbf{a} \in \mathbb{N}^{n+1}\right\}
$$

assume $\left\langle\mathbf{u}_{i}, \widetilde{\mathbf{w}}\right\rangle<\operatorname{val}\left(c_{i, \mathbf{a}}\right)+\langle\mathbf{a}, \widetilde{\mathbf{w}}\rangle$, for all i.

- Then $\operatorname{in}_{\widetilde{\mathbf{w}}}\left(g_{i}\right)=\mathbf{x}^{\mathbf{u}_{i}}$ for all i,
- and hence: $\mathrm{in}_{\widetilde{\mathbf{w}}}(I) \subseteq \mathrm{in}_{\mathbf{w}^{\prime}}(I)$.
- The two ideals have the same Hilbert function, so they are equal.

We conclude $\widetilde{\mathbf{w}} \in C_{l}\left[\mathbf{w}^{\prime}\right]$.

$\overline{C_{l}[\mathbf{w}]}$ is a proper face of $\overline{C_{l}\left[\mathbf{w}^{\prime}\right]}$

Recall $\mathbf{w}^{\prime}=\mathbf{w}+\epsilon \mathbf{V}$, in $_{\mathbf{w}^{\prime}}(I)=\left\langle\mathbf{x}^{\mathbf{u}_{1}}, \mathbf{x}^{\mathbf{u}_{2}}, \ldots, \mathbf{x}^{\mathbf{u}_{s}}\right\rangle$, and $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ forms a Gröbner basis for I with respect to \mathbf{w}^{\prime}, so $\mathrm{in}_{\mathbf{w}^{\prime}}\left(g_{i}\right)=\mathbf{x}^{\mathbf{u}_{i}}$.
This shows $C_{l}[\mathbf{w}] \subset \overline{C_{l}\left[\mathbf{w}^{\prime}\right]}$.
$\overline{C_{l}[\mathbf{w}]}$ being a $\Gamma_{\text {val }}-$ polyhedron is implied by being a face of $\overline{C_{l}\left[\mathbf{w}^{\prime}\right]}$.
Note that $\left\{\mathrm{in}_{\mathbf{w}}\left(g_{1}\right), \mathrm{in}_{\mathbf{w}}\left(g_{2}\right), \ldots, \mathrm{in}_{\mathbf{w}}\left(g_{s}\right)\right\}$ is a Gröbner basis for $\mathrm{in}_{\mathbf{w}}(I)$ with respect to \mathbf{v}. If $\widetilde{\mathbf{w}} \in \Gamma_{\text {val }}^{n+1}$ satisfies $\mathrm{in}_{\widetilde{\mathbf{w}}}(I)=\mathrm{in}_{\mathbf{w}}(I)$, then $\mathrm{in}_{\widetilde{\mathbf{w}}}\left(g_{i}\right)=\mathrm{in}_{\mathbf{w}}\left(g_{i}\right)$, for all i. Otherwise, $\mathrm{in}_{\widetilde{\mathbf{w}}}\left(g_{i}\right)$ would still have $\mathbf{x}^{\mathbf{u}_{i}}$ in its support or $\operatorname{in}_{\mathbf{v}}\left(\mathrm{in}_{\widetilde{\mathbf{w}}}(I)\right)$ would not be equal to the monomial ideal $\mathrm{in}_{\mathbf{w}^{\prime}}(I)$.

But then $\mathrm{in}_{\widetilde{\mathbf{w}}}\left(g_{i}\right)-\mathrm{in}_{\mathbf{w}}\left(g_{i}\right) \in \mathrm{in}_{\mathbf{w}}(I)$, and this polynomial does not contain any monomials from $\mathrm{in}_{\mathbf{w}^{\prime}}(I)$, contradicting $\mathrm{in}_{\mathbf{v}}\left(\mathrm{in}_{\mathbf{w}}(I)\right)=\mathrm{in}_{\mathbf{w}^{\prime}}(I)$.

We conclude that $\overline{C_{l}[\mathbf{w}]}$ is the set of points \mathbf{z} in the cone $\overline{C_{l}\left[\mathbf{w}^{\prime}\right]}$ that satisfy $\left\langle\mathbf{u}_{i}, \mathbf{z}\right\rangle=\operatorname{val}\left(c_{i, \mathbf{a}}\right)+\langle\mathbf{a}, \mathbf{z}\rangle$ whenever $\mathbf{x}^{\mathbf{a}}$ appears in $\mathrm{in}_{\mathbf{w}}\left(g_{i}\right)$. So $\overline{C_{l}[\mathbf{w}]}$ is a face of $\overline{C_{l}\left[\mathbf{w}^{\prime}\right]}$.

the lineality space $\mathbb{R} \mathbf{1}=\mathbb{R}(1,1, \ldots, 1)$

Finally, for any homogeneous polynomial $f \in K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$
we have $\mathrm{in}_{\mathbf{w}}(f)=\mathrm{in}_{\mathbf{w}+\lambda \mathbf{1}}(f)$ for all $\lambda \in \Gamma_{\text {val }}$.
Since all initial ideals of I are generated by homogeneous polynomials, by Lemma 2.4.2, this implies $\mathrm{in}_{\mathbf{w}}(I)=\mathrm{in}_{\mathbf{w}+\lambda \mathbf{1}}(I)$ for all $\lambda \in \Gamma_{\text {val }}$. Therefore, $\overline{C_{l}[\mathbf{w}]}=\overline{C_{l}[\mathbf{w}]}+\mathbb{R} \mathbf{1}$.

The lineality space of the polyhedron $\overline{C_{l}[\mathbf{w}]}$ contains the line $\mathbb{R} \mathbf{1}$.

