# Tropical Islands 

Jan Verschelde

University of Illinois at Chicago<br>Department of Mathematics, Statistics, and Computer Science<br>http://www.math.uic.edu/~jan<br>jan@math.uic.edu

## Graduate Computational Algebraic Geometry Seminar

## Tropical Islands

(9) Introduction

- Introduction to Tropical Geometry
(2) Arithmetic
- the min-plus algebra
- tropical polynomials
- the tropical fundamental theorem of algebra
(3) Dynamic Programming
- finding the shortest path in a graph
- the assignment problem
(4) Plane Curves
- graphing a tropical line
- intersecting two tropical lines


## Tropical Islands

(9) Introduction

- Introduction to Tropical Geometry
(2) Arithmetic
- the min-plus algebra
- tropical polynomials
- the tropical fundamental theorem of algebra
(3) Dynamic Programming
- finding the shortest path in a graph
- the assignment problem

4. Plane Curves

- graphing a tropical line
- intersecting two tropical lines


## Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of Diane Maclagan and Bernd Sturmfels.

The web page
http://homepages.warwick.ac.uk/staff/D.Maclagan/
papers/TropicalBook.html
offers the pdf file of the first five chapters (23 August 2013).
Tropical islands is the title of the first chapter, which promises a friendly welcome to tropical mathematics.

## overview of the book

The titles of the five chapters with some important sections:
(1) Tropical Islands

- amoebas and their tentacles
- implicitization
(2) Building Blocks
- polyhedral geometry
- Gröbner bases
- tropical bases
(3) Tropical Varieties
- the fundamental theorem
- the structure theorem
- multiplicities and balancing
- connectivity and fans
- stable intersection
(4) Tropical Rain Forest
(5) Linear Algebra


## Tropical Islands

(4) Introduction

- Introduction to Tropical Geometry
(2) Arithmetic
- the min-plus algebra
- tropical polynomials
- the tropical fundamental theorem of algebra

Dynamic Programming

- finding the shortest path in a graph
- the assignment problem
(4) Plane Curves
- graphing a tropical line
- intersecting two tropical lines


## the min-plus algebra

In the min-plus algebra, addition is replaced by the minimum and the multiplication is replaced by the addition.

Imre Simon pioneered the min-plus algebra in optimization theory. French mathematicians called the min-plus algebra tropical.
Origins of algebraic geometry: study zero sets of polynomial systems.
Polynomials in the tropical semiring define piecewise-linear functions. Tropical algebraic varieties are composed of convex polyhedra.
Tropical methods are used to solve problems in algebra, geometry, and combinatorics.

## the tropical semiring

The tropical semiring is denoted as $(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$, with

$$
x \oplus y=\min (x, y) \quad \text { and } \quad x \odot y=x+y
$$

The neutral elements are $\infty$ and $0: x \oplus \infty=x$ and $x \odot 0=x$.
Both operations are commutative and associative. The distributive law is $x \odot(y \oplus z)=x \odot y \oplus y \odot z$.

There is no substraction, e.g.: $4 \oplus x=13$ has no solution.

## the Freshman's Dream

The tropical Pascal's triangle with binomial coefficients is zero.

$$
\begin{aligned}
(x \oplus y)^{\odot 2} & =(x \oplus y) \odot(x \oplus y) \\
& =\min (x, y)+\min (x, y) \\
& =\min (x+x, x+y, y+x, y+y) \\
& =\min (x+x, y+y) \\
& =\min \left(x^{\odot 2}, y^{\odot 2}\right) \\
& =x^{\odot 2} \oplus y^{\odot 2}
\end{aligned}
$$

For any power $p:(x \oplus y)^{\odot p}=x^{\odot p} \oplus y^{\odot p}$.

## tropical monomials

Let $x_{1}, x_{2}, \ldots, x_{n}$ be variables representing elements in $(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$, then a tropical monomial is a product of variables, allowing repetition. Example:

$$
x_{2} \odot x_{1} \odot x_{3} \odot x_{1} \odot x_{4} \odot x_{2} \odot x_{3} \odot x_{2}=x_{1}^{\odot 2} x_{2}^{\odot 3} x_{3}^{\odot 2} x_{4}
$$

As a function, a tropical monomial is a linear function.

$$
x_{2}+x_{1}+x_{3}+x_{1}+x_{4}+x_{2}+x_{3}+x_{2}=2 x_{1}+3 x_{2}+2 x_{3}+x_{4}
$$

Every linear function in $n$ variables with integer coefficients we can write as a tropical monomial, exponents can be negative.

Tropical monomials are the linear functions on $\mathbb{R}^{n}$ with integer coefficients.

## tropical polynomials

Any finite linear combination of tropical monomials defines a tropical polynomial with real coefficients and integer exponents:

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =c_{\mathbf{a}_{1}} \odot x_{1}^{\odot a_{1,1}} x_{2}^{\odot a_{1,2}} \cdots x_{n}^{\odot a_{1, n}} \\
& \oplus c_{\mathbf{a}_{2}} \odot x_{1}^{\odot a_{2,1}} x_{2}^{\odot a_{2,2}} \cdots x_{n}^{\odot a_{2, n}} \\
& \oplus \cdots \\
& \oplus c_{\mathbf{a}_{k}} \odot x_{1}^{\odot a_{k, 1}} x_{2}^{\odot a_{k, 2}} \cdots x_{n}^{\odot a_{k, n}}
\end{aligned}
$$

The corresponding function:

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\min ( & a_{a_{1}}+a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n} \\
& c_{a_{2}}+a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n} \\
& \cdots, \\
& \left.c_{a_{k}}+a_{k, 1} x_{1}+a_{k, 2} x_{2}+\cdots+a_{k, n} x_{n}\right)
\end{aligned}
$$

## piecewise-linear functions

Tropical polynomials as functions $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$
(1) are continuous;
(2) are piecewise-linear, with a finite number of pieces; and
(3) are concave, i.e.: $p\left(\frac{x+y}{2}\right) \geq \frac{1}{2}(p(x)+p(y))$ for all $x, y \in \mathbb{R}$.

Any function which satisfies these three properties can be represented as the minimum of a finite set of linear functions.

## Lemma

The tropical polynomials in $n$ variables are the piecewise-linear functions on $\mathbb{R}^{n}$ with integer coefficients.
the graph of a tropical quadratic polynomial

$$
a \odot x^{\odot} \cdot 2 \oplus b \odot x \oplus c=\min (a+2 x, b+x, c)
$$



If $b-a \leq c-b$, then $p(x)=a \odot(x \oplus(b-a)) \odot(x \oplus(c-b))$

$$
=a+\min (x, b-a)+\min (x, c-b)
$$

## the tropical fundamental theorem of algebra

## Theorem

Every tropical polynomial function can be written uniquely as a tropical product of tropical linear functions.

Note:

- Distinct polynomials can represent the same function.

$$
\begin{aligned}
x^{2} \oplus 17 \odot x \oplus 2 & =\min (2 x, x+17,2) \\
& =\min (2 x, x+1,2) \\
& =x^{2} \oplus 1 \odot x \oplus 2 \\
& =(x \oplus 1)^{\odot 2}
\end{aligned}
$$



- Every polynomial can be replaced by an equivalent polynomial (equivalent means: representing the same function) that can be factored into linear functions.


## Tropical Islands

## (1) Introduction

- Introduction to Tropical Geometry
(2) Arithmetic
- the min-plus algebra
- tropical polynomials
- the tropical fundamental theorem of algebra
(3) Dynamic Programming
- finding the shortest path in a graph
- the assignment problem
(4) Plane Curves
- graphing a tropical line
- intersecting two tropical lines


## dynamic programming

Problem: find the shortest path in a weighted directed graph.
Graph $G$ with $n$ nodes labeled $1,2, \ldots, n$; edge $(i, j)$ has weight $d_{i j} \geq 0 ; d_{i j}=0$ for all nodes $i$; if no edge between $i$ and $j$, then $d_{i j}=\infty$.
$D_{G}=\left(d_{i j}\right)$ is the adjacency matrix of $G$.
The Floyd-Warshall algorithm uses the recursive formula for finding the shortest path, for $r \geq 2$ :

$$
d_{i j}^{(r)}=\min \left\{d_{i k}^{(r-1)}+d_{k j}: k=1,2, \ldots, n\right\}
$$

is the length of the shortest path between $i$ and $j$, visiting at most $r$ edges, where $d_{i j}^{(1)}=d_{i j}$.

## tropical formulation

The formula

$$
d_{i j}^{(r)}=\min \left\{d_{i k}^{(r-1)}+d_{k j}: k=1,2, \ldots, n\right\}
$$

can be rewritten, using $\mathrm{min}=\oplus$ and $+=\odot$, as follows:

$$
\begin{aligned}
d_{i j}^{(r)} & =d_{i 1}^{(r-1)} \odot d_{1 j} \oplus d_{i 2}^{(r-1)} \odot d_{2 j} \oplus \cdots \oplus d_{i n}^{(r-1)} \odot d_{n j} \\
& =\left(d_{i 1}^{(r-1)}, d_{i 2}^{(r-1)}, \ldots, d_{i n}^{(r-1)}\right) \odot\left(d_{1 j}, d_{2 j}, \ldots, d_{n j}\right)^{T} .
\end{aligned}
$$

The right hand side of the formula for $d_{i j}^{(r)}$ is the product of the $i$ th row of $D_{G}^{\odot r-1}$ with the $j$ th column of $D_{G}$.

## Proposition

The entry of $D_{G}^{\odot n-1}$ in row $i$ and column $j$ equals the length of the shortest path from $i$ to $j$.

## from classical to tropical arithmetic

To $D_{G}$ associate $A_{G}(\epsilon)$, for an infinitesimal $\epsilon>0$, e.g.:

$$
D_{G}=\left(\begin{array}{llll}
0 & 1 & 3 & 7 \\
2 & 0 & 1 & 3 \\
4 & 5 & 0 & 1 \\
6 & 3 & 1 & 0
\end{array}\right) \quad A_{G}(\epsilon)=\left(\begin{array}{cccc}
1 & \epsilon^{1} & \epsilon^{3} & \epsilon^{7} \\
\epsilon^{2} & 1 & \epsilon^{1} & \epsilon^{3} \\
\epsilon^{4} & \epsilon^{5} & 1 & \epsilon^{1} \\
\epsilon^{6} & \epsilon^{3} & \epsilon^{1} & 1
\end{array}\right)
$$

Then $A_{G}(\epsilon)^{3}$ is in classical arithmetic:
$\left(\begin{array}{llll}1+3 \epsilon^{3}+\cdots & 3 \epsilon+\epsilon^{4}+\cdots & 3 \epsilon^{2}+3 \epsilon^{3}+\cdots & \epsilon^{3}+6 \epsilon^{4}+\cdots \\ 3 \epsilon^{2}+4 \epsilon^{5}+\cdots & 1+3 \epsilon^{3}+\cdots & 3 \epsilon+\epsilon^{3}+\cdots & 3 \epsilon^{2}+3 \epsilon^{3}+\cdots \\ 3 \epsilon^{4}+2 \epsilon^{6}+\cdots & 3 \epsilon^{4}+6 \epsilon^{5}+\cdots & 1+3 \epsilon^{2}+\cdots & 3 \epsilon+\epsilon^{3}+\cdots \\ 6 \epsilon^{5}+3 \epsilon^{6}+\cdots & 3 \epsilon^{3}+\epsilon^{5}+\cdots & 3 \epsilon+\epsilon^{3}+\cdots & 1+3 \epsilon^{2}+\cdots\end{array}\right)$
The lowest exponent of $\epsilon$ in the $(i, j)$-th entry of $A_{G}(\epsilon)^{3}$ is the $(i, j)$-th entry in the tropical matrix $D_{G}^{\odot}$.

## tropicalization

Passing from classical to tropical arithmetic is tropicalization, informally summarized as

$$
\text { tropical }=\lim _{\epsilon \rightarrow 0} \log _{\epsilon}(\operatorname{classical}(\epsilon)) .
$$

The algebraic notion of valuations make tropicalization rigorous.

## the assignment problem

Imagine $n$ jobs have to be assigned to $n$ workers; and each job needs to be assigned to exactly one worker.

Notations:

- Let $x_{i j}$ be the cost of assigning job $i$ to worker $j$.
- An assignment is a permutation $\pi$ of $(1,2, \ldots, n)$.
- $S_{n}$ is the group of all permutations of $n$ elements.

The optimal cost is the minimum over all permutations:

$$
\min \left\{x_{1 \pi(1)}+x_{2 \pi(2)}+\cdots+x_{n \pi(n)}: \pi \in S_{n}\right\}
$$

The tropical permanent of a matrix $X=\left(x_{i j}\right)$ is

$$
\operatorname{tropdet}(X)=\bigoplus_{\pi \in S_{n}} x_{1 \pi(1)} \odot x_{2 \pi(2)} \odot \cdots \odot x_{n \pi(n)}
$$

## the tropical determinant $=$ the tropical permanent

$$
\operatorname{tropdet}(X)=\bigoplus_{\pi \in S_{n}} x_{1 \pi(1)} \odot x_{2 \pi(2)} \odot \cdots \odot x_{n \pi(n)}
$$

As the sum over the products defined by all permutations, the tropical permanent is the same as the tropical permanent.

## Proposition

The tropical determinant solves the assignment problem.
The Hungarian assignment method (Harold Kuhn, 1955) is

- an iterative method that at each step chooses an unassigned worker and a shortest path from this worker to the set of jobs;
- is a polynomial-time algorithm, runs in $O\left(n^{3}\right)$ operations;
- is a certain tropicalization of Gaussian elimination.


## tropicalization

Consider a matrix in $\epsilon$, with terms of lowest order listed first:

$$
A(\epsilon)=\left(\begin{array}{ccc}
a_{11} \epsilon^{x_{11}}+\cdots & a_{12} \epsilon^{x_{12}}+\cdots & a_{13} \epsilon^{x_{13}}+\cdots \\
a_{21} \epsilon^{x_{21}}+\cdots & a_{22} \epsilon^{x_{22}}+\cdots & a_{23} \epsilon^{x_{23}}+\cdots \\
a_{31} \epsilon^{x_{31}}+\cdots & a_{32} \epsilon^{x_{32}}+\cdots & a_{33} \epsilon^{x_{33}}+\cdots
\end{array}\right) .
$$

For sufficiently random values of $a_{i j}$, so no cancellation of lowest order coefficients happens when expanding $\operatorname{det}(A(\epsilon))$, we have

$$
\operatorname{det}(A(\epsilon))=\alpha \cdot \epsilon^{\operatorname{tropdet}(X)}+\cdots \quad \text { for some nonzero } \alpha
$$

To compute tropdet $(X)$ we can apply tropicalization:

$$
\text { tropical }=\lim _{\epsilon \rightarrow 0} \log _{\epsilon}(\operatorname{classical}(\epsilon))
$$

## Tropical Islands

## (4) Introduction

- Introduction to Tropical Geometry
(2) Arithmetic
- the min-plus algebra
- tropical polynomials
- the tropical fundamental theorem of algebra
(3) Dynamic Programming
- finding the shortest path in a graph
- the assignment problem

4 Plane Curves

- graphing a tropical line
- intersecting two tropical lines
graph of the tropical line $L(x, y)=1 \odot x \oplus 2 \odot y \oplus 3$



## a picture in the plane

$$
L: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto \min (1+x, 2+y, 3)
$$

Look where the minimum is attained at least twice:


## intersecting two tropical lines

Intersecting $1 \odot x \oplus 2 \odot y \oplus 3$ with $-2 \odot x \oplus 4 \odot y \oplus 2$ : where $\min (1+x, 2+y, 3)$ and $\min (-2+x, 4+y, 2)$ attain their mininum twice.


