Jan Verschelde

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~jan jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Introduction to Tropical Geometry

Hypersurfaces

- tropical varieties defined by one polynomial
- tropical varieties and skeletons
- The Fundamental Theorem
 - tropicalization of a variety
 - steps in the proof

Multiplicities and the Balancing Condition

- assigning multiplicities to rays
- balancing a fan
- the structure theorem

Introduction

Introduction to Tropical Geometry

Hypersurfaces

- tropical varieties defined by one polynomial
- tropical varieties and skeletons
- 3 The Fundamental Theorem
 - tropicalization of a variety
 - steps in the proof

Multiplicities and the Balancing Condition

- assigning multiplicities to rays
- balancing a fan
- the structure theorem

Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of Diane Maclagan and Bernd Sturmfels.

The web page http://homepages.warwick.ac.uk/staff/D.Maclagan/ papers/TropicalBook.html offers the pdf file of a book, dated 31 March 2014.

Today we look at tropical varieties.

This seminar is based on Chapter 3.

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction

Introduction to Tropical Geometry

Hypersurfaces

- tropical varieties defined by one polynomial
- tropical varieties and skeletons
- 3 The Fundamental Theorem
 - tropicalization of a variety
 - steps in the proof

Multiplicities and the Balancing Condition

- assigning multiplicities to rays
- balancing a fan
- the structure theorem

tropicalization

 $K[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$ is the ring of Laurent polynomials over K. For $f(\mathbf{x}) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \in K[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$ the *tropicalization of f* is a piecewise linear concave function

$$\operatorname{trop}(f)(\mathbf{w}): \mathbb{R}^n \to \mathbb{R}: \mathbf{w} \mapsto \min_{\mathbf{a} \in \mathcal{A}} \left(\operatorname{val}(c_{\mathbf{a}}) + \langle \mathbf{a}, \mathbf{w} \rangle \right).$$

The classical variety of *f* is a hypersurface in the algebraic torus T^n over the algebraically closed field K: $V(f) = \{ \mathbf{z} \in T^n : f(\mathbf{z}) = 0 \}$.

Definition

The tropical hypersurface trop(V(f)) is the set

 $\{ \mathbf{w} \in \mathbb{R}^n : \text{ the minimum in trop}(f) \text{ is achieved at least twice } \}.$

Let $V(F) = \{ \mathbf{w} \in \mathbb{R}^n : \text{ the minimum in } F \text{ is achieved at least twice } \}$ for a tropical polynomial F, then $\operatorname{trop}(V(f)) = V(\operatorname{trop}(f))$.

the fundamental theorem for tropical hypersurfaces

Theorem (Kapranov's Theorem)

For $f \in K[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$, the following three sets coincide:

- the tropical hypersurface trop(V(f)) in \mathbb{R}^n ;
- 2 the closure in \mathbb{R}^n of { $\mathbf{w} \in \Gamma_{val}^n : in_{\mathbf{w}}(f)$ is not a monomial };
- **③** the closure in \mathbb{R}^n of { (val(z_1), val(z_2), ..., val(z_n)) : **z** ∈ *V*(*f*) }.

In addition, if $\mathbf{w} = \operatorname{val}(\mathbf{z})$ for $\mathbf{z} \in (K^*)^n$ with $f(\mathbf{z}) = 0$ and n > 1,

then { $\mathbf{y} \in V(f)$: val(\mathbf{y}) = \mathbf{w} } is an infinite subset of V(f).

This theorem will serve as the base case for the fundamental theorem.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

lifting zeroes of initial forms

Proposition 3.1.5 is used to prove Kapranov's Theorem.

Every zero of an initial form of f lifts to a zero of f.

Proposition (Proposition 3.1.5)

Let $f \in K[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}].$

- Let $\mathbf{w} \in \Gamma_{val}^n$ for which $in_{\mathbf{w}}(f)$ is not a monomial.
- Let $\mathbf{z} \in (\mathbb{K}^*)^n$ satisfy $\operatorname{in}_{\mathbf{w}}(f)(\mathbf{z}) = 0$.

There exists a $\mathbf{y} \in (K^*)^n$: $f(\mathbf{y}) = 0$, $\operatorname{val}(\mathbf{y}) = \mathbf{w}$ and $\overline{t^{-\mathbf{w}}\mathbf{y}} = \mathbf{z}$.

If n > 1, then there are infinitely many such **y**.

The proposition is reminiscent of Hensel's Lemma.

tropical varieties and skeletons

A *k-skeleton* of a polytope is the union of its *k*-dimensional faces.

Proposition (Proposition 3.1.6)

Let $f \in K[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$. The tropical hypersurface trop(V(f)) is the support of a pure Γ_{val} -rational polyhedral complex of dimension n-1 in \mathbb{R}^n . It is the (n-1)-skeleton of the polyhedral complex dual to a regular subdivision of the Newton polytope of $f = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}$ given by

the weights $val(c_a)$ on the lattice points in A.

The coarsest polyhedral complex such that trop(f) is linear on each cell is denoted by $\Sigma_{trop(f)}$. The maximal cells of $\Sigma_{trop(f)}$ have the form

$$\sigma = \{ \mathbf{w} \in \mathbb{R}^{n+1} : \operatorname{trop}(f)(\mathbf{w}) = \mathbf{c} + \langle \mathbf{w}, \mathbf{a} \rangle \},\$$

where $c \odot \mathbf{x}^{\mathbf{a}}$ runs over the monomials of $\operatorname{trop}(f)$. $|\Sigma_{\operatorname{trop}(f)}| = \mathbb{R}^{n+1}$.

イロト イヨト イヨト イヨト

polyhedral complex induced by valuation

Proof of Proposition 3.1.6. $f = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}$ has Newton polytope $P = \operatorname{conv}(A)$ and $P_{\operatorname{val}} = \{ (\mathbf{a}, \operatorname{val}(c_{\mathbf{a}})) \mid \mathbf{a} \in A \}.$

A lower face $face_{\mathbf{v}}(P_{val})$ of P_{val} is determined by a $\mathbf{v} \neq \mathbf{0}$:

$$\operatorname{face}_{\boldsymbol{v}}(\boldsymbol{P}) = \{ \ \boldsymbol{x} \in \boldsymbol{P}_{\operatorname{val}} : \langle \boldsymbol{x}, \boldsymbol{v} \rangle \leq \langle \boldsymbol{y}, \boldsymbol{v} \rangle, \ \text{for all } \boldsymbol{y} \in \boldsymbol{P}_{\operatorname{val}} \ \}.$$

Let $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ be the projection onto the first *n* coordinates. The regular subdivision of *P* induced by $val(c_a)$ consists of all $\pi(F)$, for *F* ranging over all lower faces of P_{val} .

 $\mathcal{N}(F) = \{ \mathbf{v} : \text{face}_{\mathbf{v}}(P_{\text{val}}) = F \} \text{ is the normal cone of } F.$ $\widetilde{\pi}(\mathcal{N}(F)) = \{ \mathbf{w} \in \mathbb{R}^n : (\mathbf{w}, 1) \in \mathcal{N}(F) \} \text{ is the restricted projection.}$

The collection of all $\tilde{\pi}(\mathcal{N}(F))$ as *F* ranges over all lower faces of P_{val} forms a polyhedral complex in \mathbb{R}^n that is dual to the regular subdivision of *P* induced by val(c_a).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

trop(V(f)) is the (n-1)-skeleton of $\Sigma_{\text{trop}(f)}$

Proof continued. If $(v_1, v_2, ..., v_n, 1) \in \mathcal{N}(F)$, then $\operatorname{in}_{\mathbf{v}}(f)$ is supported on $\pi(F)$ and $\pi(F)$ is the Newton polytope of $\operatorname{in}_{\mathbf{v}}(f)$.

This means: $\mathbf{w} = (w_1, w_2, \dots, w_n) \in \operatorname{trop}(V(f))$ if and only if $\mathbf{w} \in \widetilde{\pi}(F)$ for some face F of P_{val} that has more than one vertex.

So $\mathbf{w} \in \operatorname{trop}(V(f))$ if and only if $F = \operatorname{face}_{(\mathbf{w},1)}(P_{\operatorname{val}})$ is not a vertex.

This happens if and only if the face $\tilde{\pi}(\mathcal{N}(F))$ of the dual complex that contains **w** is not full dimensional.

We conclude: trop(V(f)) is the (n - 1)-skeleton of the dual complex, and this is a pure Γ_{val} -rational polyhedral complex.

an important case

In case the valuations of the coefficients of *f* are all zero, the tropical hypersurface is a fan in \mathbb{R}^n .

Proposition (Proposition 3.1.10)

Let $f \in K[x_1^{\pm 1}, x_2^{\pm 1}, ..., x_n^{\pm 1}]$ be a Laurent polynomial with coefficients that all have zero valuation. The tropical hypersurface trop(V(f)) is the support of an (n - 1)-dimensional polyhedral fan in \mathbb{R}^n . That fan is the (n - 1)-skeleton of the normal fan to Newton polytope of f.

The complex $\Sigma_{\text{trop}(f)}$ is the normal fan of the Newton polytope of *f* and we apply Proposition 3.1.6.

Introduction

Introduction to Tropical Geometry

Hypersurfaces

- tropical varieties defined by one polynomial
- tropical varieties and skeletons

The Fundamental Theorem

- tropicalization of a variety
- steps in the proof

Multiplicities and the Balancing Condition

- assigning multiplicities to rays
- balancing a fan
- the structure theorem

tropicalization of a variety

Definition

Let *I* be an ideal in $K[\mathbf{x}^{\pm 1}]$ and let X = V(I) be its variety in the algebraic torus T^n .

The *tropicalization* trop(X) of the variety X is the intersection of all tropical hypersurfaces defined by Laurent polynomials in the ideal:

$$\operatorname{trop}(X) = \bigcap_{f \in I} \operatorname{trop}(V(f)) \subseteq \mathbb{R}^n.$$

By a *tropical variety* in \mathbb{R}^n we mean any subset of the form $\operatorname{trop}(X)$ where X is a subvariety of the torus \mathcal{T}^n over a field K with valuation.

A finite intersection of tropical hypersurfaces is a tropical prevariety.

3

・ロト ・四ト ・ヨト ・ヨトー

tropical basis and tropical variety

A finite generating set \mathcal{T} of I is a tropical basis if for all $\mathbf{w} \in \Gamma_{val}^{n}$, $\operatorname{in}_{\mathbf{w}}(I)$ contains a unit $\Leftrightarrow \operatorname{in}_{\mathbf{w}}(\mathcal{T}) = \{ \operatorname{in}_{\mathbf{w}}(f) : f \in \mathcal{T} \}$ contains a unit.

With a tropical basis, every tropical variety is a tropical prevariety.

Corollary (Corollary 3.2.3)

Every tropical variety is a finite intersection of tropical hypersurfaces.

More precisely, if \mathcal{T} is a tropical basis of the ideal I, then

$$\operatorname{trop}(X) = \bigcap_{f \in \mathcal{T}} \operatorname{trop}(V(f)).$$

Corollary (Corollary 3.2.4)

If X is a subvariety of the torus T^n over K, then its tropicalization $\operatorname{trop}(X)$ is the support of a Γ_{val} -rational polyhedral complex.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the fundamental theorem

Theorem (Fundamental Theorem of Tropical Algebraic Geometry) Let I be an ideal in $K[\mathbf{x}^{\pm 1}]$ and

let X = V(I) its variety in the algebraic torus $T^n \cong (K^*)^n$.

Then the following three subsets of \mathbb{R}^n coincide:

• the tropical variety
$$\operatorname{trop}(X) = \bigcap_{f \in I} \operatorname{trop}(V(f));$$

3 the closure in \mathbb{R}^n of the set of all vectors $\mathbf{w} \in \Gamma_{\text{val}}^n$ with $\operatorname{in}_{\mathbf{w}}(I) \neq \langle \mathbf{1} \rangle$;

the closure of the set of coordinatewise valuations of points in X:

 $\operatorname{val}(X) = \{ (\operatorname{val}(z_1), \operatorname{val}(z_2), \dots, \operatorname{val}(z_n)) : (z_1, z_2, \dots, z_n) \in X \}.$

3

initial forms and monomial maps

Lemma (Lemma 3.2.6)

Let $X \subset T^n$ be an irreducible variety of dimension d, with prime ideal $I \subset K[\mathbf{x}^{\pm 1}]$ and let $\mathbf{w} \in \operatorname{trop}(X) \cap \Gamma_{\operatorname{val}}^n$. All minimal associated primes of $\operatorname{in}_{\mathbf{w}}(I)$ in $\mathbb{K}[\mathbf{x}^{\pm 1}]$ have dimension d.

Proposition (Proposition 3.2.7)

Let X be a subvariety in T^n and $m \ge \dim(X)$. There is a monomial map $\phi : T^n \to T^m$ with its image $\phi(X)$ Zariski closed in T^m and $\dim(\phi(X)) = \dim(X)$. We can choose this map so that the kernel of the induced linear map $\operatorname{trop}(\phi) : \mathbb{R}^n \to \mathbb{R}^m$ intersects trivially with a fixed finite arrangement of codimension n - m subspaces in \mathbb{R}^n .

The proof derives a version of Noether normalization for $K[\mathbf{x}^{\pm 1}]$.

イロト 不得 トイヨト イヨト 二日

the Gröbner characterization

Proposition (Proposition 3.2.8)

Let *I* be an ideal in $K[\mathbf{x}^{\pm 1}]$ and X = V(I) its variety.

Then trop(X) is the union of all cells in the Gröbner complex $\Sigma(I_{\text{proj}})$.

Lemma (Lemma 3.2.10)

Let *X* be a *d*-dimensional subvariety of T^n , with ideal $I \subset K[\mathbf{x}^{\pm 1}]$.

Every polyhedron in the Gröbner complex with support $\{ \mathbf{w} \in \Gamma_{val}^{n} : in_{\mathbf{w}}(I) \neq \langle 1 \rangle \}$ has dimension at most d.

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

lifting points and monomial maps

Proposition (Proposition 3.2.11)

Let X be an irreducible d-dimensional subvariety of T^n with prime ideal $I \subseteq K[\mathbf{x}^{\pm 1}]$. Fix $\mathbf{w} \in \Gamma_{val}^n$ with $\operatorname{in}_{\mathbf{w}}(I) \neq \langle 1 \rangle$ and $\mathbf{z} \in V(\operatorname{in}_{\mathbf{w}}(I)) \subset (\mathbb{K}^*)^n$.

There is a $\mathbf{y} \in X$ with $val(\mathbf{y}) = \mathbf{w}$ and $\overline{t^{-\mathbf{w}}\mathbf{y}} = \mathbf{z}$.

If dim(X) > 0, then there are infinitely many such $\mathbf{y} \in X$.

Tropicalization commutes with morphism of tori:

Corollary (Corollary 3.2.13)

Let $\phi : T^n \to T^m$ be a monomial map. Consider any subvariety X of T^n and the Zariski closure $\overline{\phi(X)}$ of its image in T^m . Then:

 $\operatorname{trop}(\overline{\phi(X)}) = \operatorname{trop}(\phi)(\operatorname{trop}(X)).$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Introduction

Introduction to Tropical Geometry

Hypersurfaces

- tropical varieties defined by one polynomial
- tropical varieties and skeletons
- 3 The Fundamental Theorem
 - tropicalization of a variety
 - steps in the proof

Multiplicities and the Balancing Condition

- assigning multiplicities to rays
- balancing a fan
- the structure theorem

an example

Consider $f \in \mathbb{C}[x^{\pm 1}, y^{\pm 1}]$, a Laurent polynomial:

$$f = c_{1,2}xy^2 + c_{0,2}y^2 + c_{2,1}x^2y + c_{1,1}xy + c_{1,0}y + c_{4,0}x^4 + c_{2,0}x^2 + c_{0,0}$$

with its Newton polygon and its normal fan:

multiplicity

Definition

Let $S = \mathbb{K}[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$. The primary decomposition of an ideal Iin S is a finite intersection of primary ideals: $I = \bigcap_{i=1}^r Q_i$ with corresponding irreducible decomposition $I = \bigcap_{j=1}^s P_j$, with P_j the minimal associated primes, obtained as $P_j = \sqrt{Q_i}$ for some $i, P_j \in Ass(I)$. The *multiplicity of* P_j is

$$\operatorname{nult}(P_j, I) := \ell((S/Q_i)_{P_j}) = \ell((I : P_j^{\infty})/I)_{P_j}),$$

where $\ell(M)$ is the length of an *S*-module *M*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

weights on a fan

Definition (Definition 3.4.3)

Let *I* be an ideal in $K[x_1^{\pm 1}, x_2^1, \dots, x_n^{\pm 1}]$.

Let Σ be a polyhedral complex with support $|\Sigma| = \operatorname{trop}(V(I))$

such that $in_{\mathbf{w}}(I)$ is constant for $\mathbf{w} \in relint(\sigma)$ for all $\sigma \in \Sigma$.

For a $\sigma \in \Sigma$, maximal with respect to inclusion, its *multiplicity* is

$$\operatorname{mult}(\sigma) = \sum_{\boldsymbol{P} \in \operatorname{Ass}(I)} \operatorname{mult}(\boldsymbol{P}, \operatorname{in}_{\boldsymbol{W}}(I)) \text{ for any } \boldsymbol{W} \in \operatorname{relint}(\sigma).$$

3

イロト イヨト イヨト イヨト

a balanced fan

Definition

Let Σ be a rational, pure *d*-dimensional fan in \mathbb{R}^n . Fix weights $m(\sigma) \in \mathbb{N}^n$ for all *d*-dimensional cones $\sigma \in \Sigma$.

For a (d-1)-dimensional cone $\tau \in \Sigma$, let *L* be the linear space parallel to τ , dim(L) = d - 1. The abelian group $L_{\mathbb{Z}} = L \cap \mathbb{Z}^n$ is free of rank d - 1, with $N_{\tau} = \mathbb{Z}^n / L_{\mathbb{Z}} \cong \mathbb{Z}^{n-d+1}$.

For each $\sigma \in \Sigma$ with $\tau \subsetneq \sigma$, the set $(\sigma + L)/L$ is a one dimensional cone in $N_r \otimes \mathbb{R}$. Let \mathbf{u}_{σ} be the first lattice point on this ray.

The fan Σ is *balanced at* τ if $\sum_{\sigma \supseteq \tau} m(\sigma) \mathbf{u}_{\sigma} = \mathbf{0}$.

The fan Σ is *balanced* if it is balanced at each $\tau \in \Sigma$, dim $(\tau) = d - 1$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

the structure theorem

Definition

A pure *d*-dimensional polyhedral complex Σ in \mathbb{R}^n is connected through codimension one if for any two *d*-dimensional cells $P, Q \in \Sigma$ there is a chain $P = P_1, P_2, \ldots, P_s = Q$ for which P_i and P_{i+1} share a common facet F_i , for $1 \le i < s$. Since P_i are facets of Σ and F_i are ridges, we call this a *facet-ridge path* connecting P and Q.

Theorem (Structure Theorem for Tropical Varieties)

Let X be an irreducible d-dimensional variety of T^n . Then trop(X) is the support of a balanced weighted Γ_{val} -rational polyhedral complex pure of dimension d. Moreover, the polyhedral complex is connected through codimension 1.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

computing multiplicities

Lemma (Lemma 3.4.6)

Let
$$f = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \in K[x_{1}^{\pm 1}, x_{2}^{\pm 1}, \dots, x_{n}^{\pm 1}]$$
 and

- let △ be a regular subdivision of the Newton polytope of f, induced by val(c_a); and
- let Σ be the polyhedral complex supported on trop(V(f)) that is dual to Δ.

The multiplicity of a maximal cell $\sigma \in \Sigma$ is the lattice length of the edge $e(\sigma)$ of Δ dual to σ .

(4月) キョ・キョ・

the example revisited

Assume $val(\cdot)$ does not triangulate the Newton polygon of *f*.

applying a unimodular coordinate transformation

$$in_{(-2,-3)}(f)(x,y) = x^{4} + xy^{2}$$

$$(0,2) \qquad (1,2) \qquad (0,1) \qquad (1,1) \qquad (2,1) \qquad (4,0) \qquad U = \begin{pmatrix} -2 & -3 \\ 1 & 1 \end{pmatrix}, det(U) = 1$$

$$U = \begin{pmatrix} -2 & -3 \\ 1 & 1 \end{pmatrix}, det(U) = 1$$

$$U \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -8 & -8 \\ 4 & 3 \end{pmatrix}$$

$$in_{(-2,-3)}(f)(x = X^{-2}Y^{1}, y = X^{-3}Y^{1})$$

$$= (X^{-2}Y^{1})^{4} + (X^{-2}Y^{1})(X^{-3}Y^{1})^{2}$$

$$= X^{-8}Y^{4} + X^{-8}Y^{3}$$

$$= X^{-8}Y^{3}(Y + 1)$$

Jan Verschelde (UIC)

17 April 2014 28 / 30

э

proof of Lemma 3.4.6

Pick w in the relative interior of *σ*. The initial ideal in_w(⟨*f*⟩) is generated by

$$\operatorname{in}_{\mathbf{w}}(f) = \sum_{\mathbf{a} \in \boldsymbol{e}(\sigma)} \overline{t^{-\operatorname{val}(\boldsymbol{c}_{\mathbf{a}})}} \boldsymbol{c}_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}.$$

- Since dim(e(σ)) = 1, a − b for a, b ∈ e(σ) is unique up to scaling, so take v = a − b of minimal length.
- $\operatorname{in}_{\mathbf{w}}(f)$ is then a monomial times $g \in K[\mathbf{x}^{\pm 1}]$ in the variable $y = \mathbf{x}^{\mathbf{v}}$.
- We may multiply *f* with a monomial so in_w(*f*) is a polynomial (without negative exponents) with nonzero constant term.
- deg(g) equals the lattice length of e(σ), which equals the multiplicity of σ.

イロト 不得 トイヨト イヨト 二日

balancing with multiplicities

Theorem (Theorem 3.4.14)

Let *I* be an ideal in $K[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}]$ such that all irreducible components of *V*(*I*) have the same dimension *d*.

Fix a polyhedral complex Σ with support trop(V(I)) such that in_w(I) is constant for **w** in the relative interior of each cell in Σ .

Then Σ is a weighted balanced polyhedral complex with the weight function mult of Definition 3.4.3.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >