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Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of
Diane Maclagan and Bernd Sturmfels.

The web page
http://homepages.warwick.ac.uk/staff/D.Maclagan/

papers/TropicalBook.html
offers the pdf file of a book, dated 31 March 2014.

Today we look at tropical varieties.

This seminar is based on Chapter 3.
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tropicalization

K[ x2 ..., xEis the ring of Laurent polynomials over K.
For f(x) = > cax® € K[!, x5, ... x| the tropicalization of f

acA
is a piecewise linear concave function

trop(f)(w) : R” — R : w — min (val(ca) + (a,W)).

acA

The classical variety of f is a hypersurface in the algebraic torus T"
over the algebraically closed field K: V(f) ={ze T":f(z) =0 }.

Definition
The tropical hypersurface trop(V(f)) is the set

{w e R": the minimum in trop(f) is achieved at least twice }.

Let V(F) = { w e R": the minimum in F is achieved at least twice }
for a tropical polynomial F, then trop(V(f)) = V(trop(f)).

Jan Verschelde (UIC) Tropical Varieties 17 April 2014 6/30



the fundamental theorem for tropical hypersurfaces

Theorem (Kapranov’s Theorem)
Forfe Kx{', x5, ..., xif"], the following three sets coincide:

@ the tropical hypersurface trop(V(f)) inR";
Q the closure in R" of { w € T, : inw(f) is not a monomial };
© the closure inR" of { (val(z;),val(22),...,val(z,)) : z € V(f) }.

In addition, ifw = val(z) forz € (K*)" with f(z) =0 andn > 1,

then{y € V(f) : val(y) = W } is an infinite subset of V(f).

v

This theorem will serve as the base case for the fundamental theorem.
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lifting zeroes of initial forms

Proposition 3.1.5 is used to prove Kapranov’s Theorem.
Every zero of an initial form of f lifts to a zero of f.
Proposition (Proposition 3.1.5)

Letfe KPGE x3, ... x2 ).

@ Letw € I'}, for which inw(f) is not a monomial.
@ Letz € (K*)" satisfy inw(f)(z) =0

There exists ay € (K*)": f(y) =0, val(y) = w and Wy = z.
If n > 1, then there are infinitely many suchy.

The proposition is reminiscent of Hensel's Lemma.
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tropical varieties and skeletons
A k-skeleton of a polytope is the union of its k-dimensional faces.

Proposition (Proposition 3.1.6)

Letfe K[x{', x3, ..., xi"]. The tropical hypersurface trop(V(f)) is
the support of a pure T, -rational polyhedral complex of dimension
n—1inR". Itis the (n — 1)-skeleton of the polyhedral complex dual to
a regular subdivision of the Newton polytope of f = Z caXx? given by

acA
the weights val(ca) on the lattice points in A.

The coarsest polyhedral complex such that trop(f) is linear on each
cell is denoted by ¥(r). The maximal cells of ¥,(r) have the form

o={weR™": wop(f)(w) =c+ (w,a) },

where ¢ © x? runs over the monomials of trop(f). |Lyep(r)| = R,
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polyhedral complex induced by valuation

Proof of Proposition 3.1.6. f = Z cax? has Newton polytope

acA
P = conv(A) and P,y = { (a,val(ca)) |la € A }.

A lower face facey(Pya) of Py, is determined by a v # O:
facey(P) = { X € Py : (X,v) < (y,v), forally € Py }.

Let 7 : R™1 — R” be the projection onto the first n coordinates.
The regular subdivision of P induced by val(ca) consists of all 7(F),
for F ranging over all lower faces of P,,;.

N(F) ={ v : facey(Pyay) = F } is the normal cone of F.
T(N(F)) ={weR": (w,1) € N(F) } is the restricted projection.

The collection of all 7(N'(F)) as F ranges over all lower faces of Py,
forms a polyhedral complex in R” that is dual to the regular subdivision
of P induced by val(ca).
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trop(V(f)) is the (n — 1)-skeleton of X1

Proof continued. If (vy, vo,...,vp, 1) € N(F), then iny(f) is supported
on (F) and 7(F) is the Newton polytope of iny(f).

This means: w = (wy, Wa, ..., wp) € trop(V/(f)) if and only if w € 7(F)
for some face F of P, that has more than one vertex.

So w ¢ trop(V(f)) if and only if F = face(w,1)(Pva) is not a vertex.

This happens if and only if the face 7(N(F)) of the dual complex that
contains w is not full dimensional.

We conclude: trop(V/(f)) is the (n — 1)-skeleton of the dual complex,
and this is a pure I'y,-rational polyhedral complex. O
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an important case

In case the valuations of the coefficients of f are all zero,
the tropical hypersurface is a fan in R".

Proposition (Proposition 3.1.10)

Letf e KIx{', x5, ..., xi"] be a Laurent polynomial with coefficients
that all have zero valuation. The tropical hypersurface trop(V(f)) is the
support of an (n — 1)-dimensional polyhedral fan in R". That fan is the
(n — 1)-skeleton of the normal fan to Newton polytope of f.

The complex X1y is the normal fan of the Newton polytope of f
and we apply Proposition 3.1.6.
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tropicalization of a variety

Definition
Let / be an ideal in K[x*'] and
let X = V/(/) be its variety in the algebraic torus T".

The tropicalization trop(X) of the variety X is the intersection of all
tropical hypersurfaces defined by Laurent polynomials in the ideal:

trop(X ﬂ trop(V(f)) C R".
fel

By a tropical variety in R" we mean any subset of the form trop(X)
where X is a subvariety of the torus T" over a field K with valuation.

A finite intersection of tropical hypersurfaces is a tropical prevariety.
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tropical basis and tropical variety

A finite generating set 7 of / is a tropical basis if for all w € I'"!

val’

iny(/) contains a unit < inw(7) = { inw(f) : f € T } contains a unit.
With a tropical basis, every tropical variety is a tropical prevariety.
Corollary (Corollary 3.2.3)

Every tropical variety is a finite intersection of tropical hypersurfaces.
More precisely, if T is a tropical basis of the ideal I, then

trop(X) = ﬂ trop( V(f)).
feT

Corollary (Corollary 3.2.4)

If X is a subvariety of the torus T" over K, then its tropicalization
trop(X) is the support of a I'y, -rational polyhedral complex.
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the fundamental theorem

Theorem
(Fundamental Theorem of Tropical Algebraic Geometry)
Let | be an ideal in K[x*'] and
let X = V/(I) its variety in the algebraic torus T" = (K*)".
Then the following three subsets of R" coincide:
@ the tropical variety trop(X) = () trop(V(f));
fel
@ the closure in R" of the set of all vectors w € T, with inw(/) # (1);

© the closure of the set of coordinatewise valuations of points in X :

val(X) = { (val(z1), val(2p),...,val(zp)) : (21, 22,...,2n) € X }.
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initial forms and monomial maps

Lemma (Lemma 3.2.6)

Let X c T" be an irreducible variety of dimension d,
with prime ideal | ¢ K[x*1] and letw € trop(X) N T"

val

All minimal associated primes of iny (/) in K[x*1] have dimension d.

4

Proposition (Proposition 3.2.7)

Let X be a subvariety in T" and m > dim(X).

There is a monomial map ¢ : T" — T™ with its image ¢(X) Zariski
closed in T™ and dim(¢(X)) = dim(X).

We can choose this map so that the kernel of the induced linear map
trop(¢) : R" — R™ intersects trivially with a fixed finite arrangement of
codimension n — m subspaces in R".

The proof derives a version of Noether normalization for K[x*1].
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the Grobner characterization

Proposition (Proposition 3.2.8)
Let | be an ideal in K[x*1] and X = V/(I) its variety.

Then trop(X) is the union of all cells in the Grébner complex ¥ (lyo;).

Lemma (Lemma 3.2.10)
Let X be a d-dimensional subvariety of T", with ideal | ¢ K[x*1].

Every polyhedron in the Grébner complex with support
{werll, inw(/) # (1) } has dimension at most d.

Jan Verschelde (UIC) Tropical Varieties 17 April 2014 18/30



lifting points and monomial maps

Proposition (Proposition 3.2.11)

Let X be an irreducible d-dimensional subvariety of T" with prime ideal
I € K[x*). Fixw € I, withinw(/) # (1) and z € V(inw(/)) C (K*)".

Thereis ay € X with val(y) = w and t-Wy = z.

Ifdim(X) > 0, then there are infinitely many suchy € X.

Tropicalization commutes with morphism of tori:

Corollary (Corollary 3.2.13)

Lety : T" — T™ be a monomial map. Consider any subvariety X of T"
and the Zariski closure ¢(X) of its image in T™. Then:

trop(¢(X)) = trop(¢)(trop(X)).
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an example

Consider f € C[x*', y*1], a Laurent polynomial:

f=c; ,2Xy2 + Co,z}’2 + 02,1X2y T CiaXy +Cioy + C4,0X4 + Cz,oX2 + Co,0

with its Newton polygon and its normal fan:

(0,2) (1.2) Lo
0,1 PN
(1,0)
(0,0) (2,0) (4,0) ° (0,—1)
(_27_3)
Jan Verschelde (UIC)
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multiplicity

Definition
Let S = K[xi*!, x5, ..., xi']. The primary decomposition of an ideal /
r

in S is a finite intersection of primary ideals: | = ﬂ Q; with
s i=1
corresponding irreducible decomposition / = ﬂ P;, with P; the minimal
j=1
associated primes, obtained as P; = /Q; for some i, P; € Ass(/).

The multiplicity of P; is

mult(P, 1) = €((S/Q)p) = &((1 : P)/1)p),
where ¢(M) is the length of an S-module M.
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weights on a fan

Definition (Definition 3.4.3)

Let / be an ideal in K[x{', x}, ..., x3].

Let X be a polyhedral complex with support |X| = trop(V/(/))
such that iny(/) is constant for w € relint(c) for all o € X.

For a o € ¥, maximal with respect to inclusion, its multiplicity is

mult(o) = Z mult(P,iny(/)) for any w € relint(o).
PeAss(/)
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a balanced fan

Definition
Let X be a rational, pure d-dimensional fan in R”.
Fix weights m(c) € N for all d-dimensional cones o € ¥.

For a (d — 1)-dimensional cone 7 € ¥,
let L be the linear space parallel to 7, dim(L) = d — 1. The abelian
group Lz = LN Z"is free of rank d — 1, with N, = Z" /Ly = 7"~ 91,

For each o € ¥ with 7 C o, the set (¢ + L)/L is a one dimensional cone
in N ® R. Let u, be the first lattice point on this ray.
The fan X is balanced at 7 it Y~ m(o)u, = 0.

ooT

The fan X is balanced if it is balanced at each 7 € ¥, dim(7) = d — 1.
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the structure theorem

Definition

A pure d-dimensional polyhedral complex X in R” is connected
through codimension one if for any two d-dimensional cells P,Q € &
there is a chain P = Py, P»,..., Ps = Q for which P; and P; 4 share a
common facet Fj, for 1 < i < s. Since P; are facets of > and F; are
ridges, we call this a facet-ridge path connecting P and Q.

Theorem (Structure Theorem for Tropical Varieties)

Let X be an irreducible d-dimensional variety of T".

Then trop(X) is the support of a balanced weighted T, -rational
polyhedral complex pure of dimension d.

Moreover, the polyhedral complex is connected through codimension 1.)
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computing multiplicities

Lemma (Lemma 3.4.6)
Letf_anx e K, x5, ... xE" and

acA
@ let A be a regular subdivision of the Newton polytope of f,
induced by val(ca); and

@ let X be the polyhedral complex supported on trop(V(f))
that is dual to A.
The multiplicity of a maximal cell o € ¥ is the lattice length
of the edge e(o) of A dualto o.
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the example revisited
Assume val(-) does not triangulate the Newton polygon of f.
4

(1,2)
JRCRY 02)

() o
(1°70) -2 (1,1) (1)
? 01 ©0 20) (4.9
1

(_27_3)

() eE(e) () (2)-(5)
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applying a unimodular coordinate transformation

in_p _3y(f)(x,y) = x* + xy?

02) P
U:< : ?),det(U):1

4 1 -8 -8
(4,0) U(O 2>_< 4 3)
in_p_g)(f)(x = X2Y",y = X3YT)
:(X_2Y1)4+(X_2Y1)(X_3Y1)2
= X8y4 4 x-8y3
= X~8Y3(Y 1)

(0,1)

(0,0)

(_27_3)
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proof of Lemma 3.4.6

@ Pick w in the relative interior of o. The initial ideal inw((f)) is
generated by

inw(f) = )t cex®.

ace(o)
@ Since dim(e(c)) =1,a—b fora,b € e(o) is unique up to scaling,
so take v = a — b of minimal length.
@ iny(f) is then a monomial times g € K[x*1] in the variable y = x".

@ We may multiply f with a monomial so inw(f) is a polynomial
(without negative exponents) with nonzero constant term.

@ deg(g) equals the lattice length of e(o), which equals the
multiplicity of o. O
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balancing with multiplicities

Theorem (Theorem 3.4.14)

Let | be anideal in K[x{"', x5, ..., x;t"] such that all irreducible
components of V(I) have the same dimension d.

Fix a polyhedral complex ¥ with support trop(V(I)) such that inw(/) is
constant for w in the relative interior of each cell in x.

Then ¥ is a weighted balanced polyhedral complex with the weight
function mult of Definition 3.4.3.
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