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Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of
Diane Maclagan and Bernd Sturmfels.

The web page
http://homepages.warwick.ac.uk/staff/D.Maclagan/

papers/TropicalBook.html

offers the pdf file of a book, dated 31 March 2014.

Today we look at tropical varieties.

This seminar is based on Chapter 3.
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tropicalization
K [x±1

1 , x±1
2 , . . . , x±1

n ] is the ring of Laurent polynomials over K .
For f (x) =

∑
a∈A

caxa ∈ K [x±1
1 , x±1

2 , . . . , x±1
n ] the tropicalization of f

is a piecewise linear concave function

trop(f )(w) : Rn → R : w �→ min
a∈A

(val(ca) + 〈a,w〉) .

The classical variety of f is a hypersurface in the algebraic torus T n

over the algebraically closed field K : V (f ) = { z ∈ T n : f (z) = 0 }.

Definition
The tropical hypersurface trop(V (f )) is the set

{ w ∈ Rn : the minimum in trop(f ) is achieved at least twice }.

Let V (F ) = { w ∈ Rn : the minimum in F is achieved at least twice }
for a tropical polynomial F , then trop(V (f )) = V (trop(f )).
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the fundamental theorem for tropical hypersurfaces

Theorem (Kapranov’s Theorem)

For f ∈ K [x±1
1 , x±1

2 , . . . , x±1
n ], the following three sets coincide:

1 the tropical hypersurface trop(V (f )) in Rn;

2 the closure in Rn of { w ∈ Γn
val : inw(f ) is not a monomial };

3 the closure in Rn of { (val(z1), val(z2), . . . , val(zn)) : z ∈ V (f ) }.

In addition, if w = val(z) for z ∈ (K ∗)n with f (z) = 0 and n > 1,

then { y ∈ V (f ) : val(y) = w } is an infinite subset of V (f ).

This theorem will serve as the base case for the fundamental theorem.
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lifting zeroes of initial forms

Proposition 3.1.5 is used to prove Kapranov’s Theorem.

Every zero of an initial form of f lifts to a zero of f .

Proposition (Proposition 3.1.5)

Let f ∈ K [x±1
1 , x±1

2 , . . . , x±1
n ].

Let w ∈ Γn
val for which inw(f ) is not a monomial.

Let z ∈ (K∗)n satisfy inw(f )(z) = 0.

There exists a y ∈ (K ∗)n: f (y) = 0, val(y) = w and t−wy = z.

If n > 1, then there are infinitely many such y.

The proposition is reminiscent of Hensel’s Lemma.
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tropical varieties and skeletons

A k-skeleton of a polytope is the union of its k-dimensional faces.

Proposition (Proposition 3.1.6)

Let f ∈ K [x±1
1 , x±1

2 , . . . , x±1
n ]. The tropical hypersurface trop(V (f )) is

the support of a pure Γval-rational polyhedral complex of dimension
n − 1 in Rn. It is the (n − 1)-skeleton of the polyhedral complex dual to
a regular subdivision of the Newton polytope of f =

∑
a∈A

caxa given by

the weights val(ca) on the lattice points in A.

The coarsest polyhedral complex such that trop(f ) is linear on each
cell is denoted by Σtrop(f ). The maximal cells of Σtrop(f ) have the form

σ = { w ∈ Rn+1 : trop(f )(w) = c + 〈w,a〉 },

where c � xa runs over the monomials of trop(f ). |Σtrop(f )| = Rn+1.
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polyhedral complex induced by valuation

Proof of Proposition 3.1.6. f =
∑
a∈A

caxa has Newton polytope

P = conv(A) and Pval = { (a, val(ca)) | a ∈ A }.

A lower face facev(Pval) of Pval is determined by a v �= 0:

facev(P) = { x ∈ Pval : 〈x,v〉 ≤ 〈y,v〉, for all y ∈ Pval }.

Let π : Rn+1 → Rn be the projection onto the first n coordinates.
The regular subdivision of P induced by val(ca) consists of all π(F ),
for F ranging over all lower faces of Pval.

N (F ) = { v : facev(Pval) = F } is the normal cone of F .
π̃(N (F )) = { w ∈ Rn : (w,1) ∈ N (F ) } is the restricted projection.

The collection of all π̃(N (F )) as F ranges over all lower faces of Pval
forms a polyhedral complex in Rn that is dual to the regular subdivision
of P induced by val(ca).
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trop(V (f )) is the (n − 1)-skeleton of Σtrop(f )

Proof continued. If (v1, v2, . . . , vn,1) ∈ N (F ), then inv(f ) is supported
on π(F ) and π(F ) is the Newton polytope of inv(f ).

This means: w = (w1,w2, . . . ,wn) ∈ trop(V (f )) if and only if w ∈ π̃(F )
for some face F of Pval that has more than one vertex.

So w ∈ trop(V (f )) if and only if F = face(w,1)(Pval) is not a vertex.

This happens if and only if the face π̃(N (F )) of the dual complex that
contains w is not full dimensional.

We conclude: trop(V (f )) is the (n − 1)-skeleton of the dual complex,
and this is a pure Γval-rational polyhedral complex.
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an important case

In case the valuations of the coefficients of f are all zero,
the tropical hypersurface is a fan in Rn.

Proposition (Proposition 3.1.10)

Let f ∈ K [x±1
1 , x±1

2 , . . . , x±1
n ] be a Laurent polynomial with coefficients

that all have zero valuation. The tropical hypersurface trop(V (f )) is the
support of an (n − 1)-dimensional polyhedral fan in Rn. That fan is the
(n − 1)-skeleton of the normal fan to Newton polytope of f .

The complex Σtrop(f ) is the normal fan of the Newton polytope of f
and we apply Proposition 3.1.6.
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tropicalization of a variety

Definition
Let I be an ideal in K [x±1] and
let X = V (I) be its variety in the algebraic torus T n.

The tropicalization trop(X ) of the variety X is the intersection of all
tropical hypersurfaces defined by Laurent polynomials in the ideal:

trop(X ) =
⋂
f∈I

trop(V (f )) ⊆ Rn.

By a tropical variety in Rn we mean any subset of the form trop(X )
where X is a subvariety of the torus T n over a field K with valuation.

A finite intersection of tropical hypersurfaces is a tropical prevariety.
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tropical basis and tropical variety

A finite generating set T of I is a tropical basis if for all w ∈ Γn
val,

inw(I) contains a unit ⇔ inw(T ) = { inw(f ) : f ∈ T } contains a unit.

With a tropical basis, every tropical variety is a tropical prevariety.

Corollary (Corollary 3.2.3)
Every tropical variety is a finite intersection of tropical hypersurfaces.

More precisely, if T is a tropical basis of the ideal I, then

trop(X ) =
⋂
f∈T

trop(V (f )).

Corollary (Corollary 3.2.4)
If X is a subvariety of the torus T n over K , then its tropicalization
trop(X ) is the support of a Γval-rational polyhedral complex.
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the fundamental theorem

Theorem
(Fundamental Theorem of Tropical Algebraic Geometry)

Let I be an ideal in K [x±1] and
let X = V (I) its variety in the algebraic torus T n ∼= (K ∗)n.

Then the following three subsets of Rn coincide:
1 the tropical variety trop(X ) =

⋂
f∈I

trop(V (f ));

2 the closure in Rn of the set of all vectors w ∈ Γn
val with inw(I) �= 〈1〉;

3 the closure of the set of coordinatewise valuations of points in X :

val(X ) = { (val(z1), val(z2), . . . , val(zn)) : (z1, z2, . . . , zn) ∈ X }.
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initial forms and monomial maps

Lemma (Lemma 3.2.6)
Let X ⊂ T n be an irreducible variety of dimension d,
with prime ideal I ⊂ K [x±1] and let w ∈ trop(X ) ∩ Γn

val.
All minimal associated primes of inw(I) in K[x±1] have dimension d.

Proposition (Proposition 3.2.7)
Let X be a subvariety in T n and m ≥ dim(X ).
There is a monomial map φ : T n → T m with its image φ(X ) Zariski
closed in T m and dim(φ(X )) = dim(X ).
We can choose this map so that the kernel of the induced linear map
trop(φ) : Rn → Rm intersects trivially with a fixed finite arrangement of
codimension n − m subspaces in Rn.

The proof derives a version of Noether normalization for K [x±1].
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the Gröbner characterization

Proposition (Proposition 3.2.8)

Let I be an ideal in K [x±1] and X = V (I) its variety.

Then trop(X ) is the union of all cells in the Gröbner complex Σ(Iproj).

Lemma (Lemma 3.2.10)

Let X be a d-dimensional subvariety of T n, with ideal I ⊂ K [x±1].

Every polyhedron in the Gröbner complex with support
{ w ∈ Γn

val : inw(I) �= 〈1〉 } has dimension at most d.
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lifting points and monomial maps

Proposition (Proposition 3.2.11)
Let X be an irreducible d-dimensional subvariety of T n with prime ideal
I ⊆ K [x±1]. Fix w ∈ Γn

val with inw(I) �= 〈1〉 and z ∈ V (inw(I)) ⊂ (K∗)n.

There is a y ∈ X with val(y) = w and t−wy = z.

If dim(X ) > 0, then there are infinitely many such y ∈ X.

Tropicalization commutes with morphism of tori:

Corollary (Corollary 3.2.13)
Let φ : T n → T m be a monomial map. Consider any subvariety X of T n

and the Zariski closure φ(X ) of its image in T m. Then:

trop(φ(X )) = trop(φ)(trop(X)).
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an example

Consider f ∈ C[x±1, y±1], a Laurent polynomial:

f = c1,2xy2 + c0,2y2 + c2,1x2y + c1,1xy + c1,0y + c4,0x4 + c2,0x2 + c0,0

with its Newton polygon and its normal fan:

(0,0)

(0,1)

(0,2)

(1,1) (2,1)

(1,2)

(2,0)
(4,0)

(0,1)

(1,0)

(0,−1)

(−2,−3)

�

�

�

�
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multiplicity

Definition
Let S = K[x±1

1 , x±1
2 , . . . , x±1

n ]. The primary decomposition of an ideal I

in S is a finite intersection of primary ideals: I =
r⋂

i=1

Qi with

corresponding irreducible decomposition I =
s⋂

j=1

Pj , with Pj the minimal

associated primes, obtained as Pj =
√

Qi for some i , Pj ∈ Ass(I).

The multiplicity of Pj is

mult(Pj , I) := �((S/Qi)Pj ) = �((I : P∞
j )/I)Pj ),

where �(M) is the length of an S-module M.
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weights on a fan

Definition (Definition 3.4.3)

Let I be an ideal in K [x±1
1 , x1

2 , . . . , x
±1
n ].

Let Σ be a polyhedral complex with support |Σ| = trop(V (I))

such that inw(I) is constant for w ∈ relint(σ) for all σ ∈ Σ.

For a σ ∈ Σ, maximal with respect to inclusion, its multiplicity is

mult(σ) =
∑

P∈Ass(I)

mult(P, inw(I)) for any w ∈ relint(σ).
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a balanced fan

Definition
Let Σ be a rational, pure d -dimensional fan in Rn.
Fix weights m(σ) ∈ Nn for all d -dimensional cones σ ∈ Σ.

For a (d − 1)-dimensional cone τ ∈ Σ,
let L be the linear space parallel to τ , dim(L) = d − 1. The abelian
group LZ = L ∩ Zn is free of rank d − 1, with Nτ = Zn/LZ

∼= Zn−d+1.

For each σ ∈ Σ with τ � σ, the set (σ+ L)/L is a one dimensional cone
in Nr ⊗ R. Let uσ be the first lattice point on this ray.

The fan Σ is balanced at τ if
∑
σ�τ

m(σ)uσ = 0.

The fan Σ is balanced if it is balanced at each τ ∈ Σ, dim(τ) = d − 1.
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the structure theorem

Definition
A pure d -dimensional polyhedral complex Σ in Rn is connected
through codimension one if for any two d -dimensional cells P,Q ∈ Σ
there is a chain P = P1,P2, . . . ,Ps = Q for which Pi and Pi+1 share a
common facet Fi , for 1 ≤ i < s. Since Pi are facets of Σ and Fi are
ridges, we call this a facet-ridge path connecting P and Q.

Theorem (Structure Theorem for Tropical Varieties)
Let X be an irreducible d-dimensional variety of T n.
Then trop(X ) is the support of a balanced weighted Γval-rational
polyhedral complex pure of dimension d.
Moreover, the polyhedral complex is connected through codimension 1.
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computing multiplicities

Lemma (Lemma 3.4.6)

Let f =
∑
a∈A

caxa ∈ K [x±1
1 , x±1

2 , . . . , x±1
n ] and

let ∆ be a regular subdivision of the Newton polytope of f ,
induced by val(ca); and
let Σ be the polyhedral complex supported on trop(V (f ))
that is dual to ∆.

The multiplicity of a maximal cell σ ∈ Σ is the lattice length
of the edge e(σ) of ∆ dual to σ.
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the example revisited

Assume val(·) does not triangulate the Newton polygon of f .
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�

�

�
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)
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applying a unimodular coordinate transformation

(0,0)

(0,1)

(0,2)

(1,1) (2,1)

(1,2)

(2,0) (4,0)

(−2,−3)

�
1

in(−2,−3)(f )(x , y) = x4 + xy2

U =

(
−2 −3

1 1

)
, det(U) = 1

U
(

4 1
0 2

)
=

(
−8 −8

4 3

)

in(−2,−3)(f )(x = X−2Y 1, y = X−3Y 1)

= (X−2Y 1)4 + (X−2Y 1)(X−3Y 1)2

= X−8Y 4 + X−8Y 3

= X−8Y 3(Y + 1)
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proof of Lemma 3.4.6

Pick w in the relative interior of σ. The initial ideal inw(〈f 〉) is
generated by

inw(f ) =
∑

a∈e(σ)

t−val(ca)caxa.

Since dim(e(σ)) = 1, a − b for a,b ∈ e(σ) is unique up to scaling,
so take v = a − b of minimal length.

inw(f ) is then a monomial times g ∈ K [x±1] in the variable y = xv.

We may multiply f with a monomial so inw(f ) is a polynomial
(without negative exponents) with nonzero constant term.

deg(g) equals the lattice length of e(σ), which equals the
multiplicity of σ.
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balancing with multiplicities

Theorem (Theorem 3.4.14)

Let I be an ideal in K [x±1
1 , x±1

2 , . . . , x±1
n ] such that all irreducible

components of V (I) have the same dimension d.

Fix a polyhedral complex Σ with support trop(V (I)) such that inw(I) is
constant for w in the relative interior of each cell in Σ.

Then Σ is a weighted balanced polyhedral complex with the weight
function mult of Definition 3.4.3.
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