
Decomposing Solution Sets

of Polynomial Systems:
A New Parallel Monodromy
Breakup Algorithm∗

Anton Leykin†and Jan Verschelde‡

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago, 851 South Morgan (M/C 249)
Chicago, IL 60607-7045, USA.

Abstract: Our problem is to decompose a positive dimensional solution set of a poly-
nomial system into irreducible components. This solution set is represented by a wit-
ness set, obtained by intersecting the set with random linear slices of complementary
dimension. Points on the same irreducible components are connected by path tracking
techniques applying the idea of monodromy. The computation of a linear trace for each
component certifies the decomposition. This decomposition method exhibits a good
practical performance on solution sets of relatively high degrees defined by systems of
low degree polynomials.
Using the same concepts of monodromy and linear trace, we present a new mon-

odromy breakup algorithm. On multiple processors, we solve the synchronization issues
which resulted in a performance loss of the straightforward parallel version of the orig-
inal algorithm. Our new algorithm performs also better on a single processor: by
exploiting several random slices and choosing pairs of slices according to accumulated
statistics, the tracking of many redundant paths are avoided and new paths connecting
points of the witness set are discovered with a higher probability.
2000 Mathematics Subject Classification. Primary 65H10. Secondary 14Q99,
68W30.
Key words and phrases. Homotopy, irreducible components, linear trace, mon-
odromy, numerical algebraic geometry, parallel path tracking, polynomial systems.

1 INTRODUCTION

1.1 Problem Statement

As polynomial equations emerge more and more often in
various fields of science and engineering, the question of
simplification of polynomials and polynomial systems be-
comes of the most importance. How can we simplify? One
way to understand better the solution set of a polynomial
is to factor it; equivalently, in case of a polynomial sys-
tem we talk about finding an irreducible decomposition of
its solution set, a central problem in numerical algebraic
geometry [35, 36]. For symbolic methods to deal with pos-
itive dimensional solution sets, see for example [21] or [40].
We refer to [37], for a description of the algorithms used

∗This material is based upon work supported by the National
Science Foundation under Grant No. 0134611 and Grant No. 0410036.

†leykin@math.uic.edu. http://www.math.uic.edu/˜leykin.
‡jan@math.uic.edu. http://www.math.uic.edu/˜jan.

in computer algebra systems to factor multivariate poly-
nomials.
A widely known family of polynomial systems used for

benchmarking is “cyclic n-roots”, which arose in Fourier
analysis [3, 4]. The case n = 4 is our running example:

x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0
x1x2x3x4 − 1 = 0,

(1)

which is the so-called cyclic 4-roots problem, abbreviated
as cyclic4. This system has a one dimensional solution
component of degree four, which becomes obvious by the
substitution x3 = −x1 and x4 = −x2. After this substitu-
tion, the first three equations vanish and the last equation
simplifies to x2

1x
2
2−1. Since x

2
1x

2
2−1 = (x1x2−1)(x1x2+1),

the curve of degree four factors in two irreducible quadrics.
We denote systems of polynomial equations by f(x) =

(f1(x), . . . , fm(x)) = 0, where fi ∈ C[x] = C[x1, . . . , xn]
for all i. Very often, the coefficients are known with

1

limited accuracy. The solution set V to f(x) = 0 is
naturally organized into pure dimensional solution sets
V = [V0, V1, . . . , Vn], where dim(Vk) = k. A numerical
representation of a pure dimensional solution set Vk is a
witness set [30] [36], which consists of

1. the polynomials fi (i = 1, . . . ,m);

2. k linear equations L(x) = (L1(x), . . . , Lk(x)) = 0
with generic coefficients describing k generic hyper-
plane slices;

3. a list W of deg(Vk) isolated solutions to the system
f(x) = L(x) = 0.

By the generic choice of the coefficients of the L(x) = 0,
the k hyperplanes defined by L cut out exactly as many
isolated regular solutions on Vk as deg(Vk).
Notice how the treatment of positive dimensional solu-

tion sets is reduced to dealing with collections of generic
points. Using slack variables we reduce overdetermined
polynomial systems to systems with as many variables as
unknowns [29]. For a system like cyclic 4-roots in (1), we
add one slack variable z to the system:

x1 + x2 + x3 + x4 + b1z = 0
x1x2 + x2x3 + x3x4 + x4x1 + b2z = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 + b3z = 0
x1x2x3x4 − 1 + b4z = 0

c0 + c1x1 + c2x2 + c3x3 + c4x4 + z = 0,

(2)

where the coefficients b1, . . ., b4, c0, c1, . . ., c4 are ran-
domly chosen complex numbers. Observe that elimination
of z corresponds to adding a random multiple of the last
equation to the first four equations (a common trick in
commutative algebra to deal with overdetermined poly-
nomial systems). The extra linear equation reduces the
dimension of the solution set by one and we find generic
points on the curve as regular solutions with z = 0. For the
cyclic 4-roots system the witness set contains four generic
points, as the degree of the curve equals four.
The main question now is: given a positive dimensional

solution set V , can we find its decomposition into the irre-
ducible components? In the language of witness sets this
interprets as: given a witness set (f ,L,W) of V , can we
find a decomposition W = W (1) t . . .tW (r) such that for
all i the witness set (f ,L,W (i)) represents an irreducible
component of V ?
Finding polynomial time algorithms for the factoriza-

tion of multivariate polynomials with approximate coeffi-
cients was posed in [20] as one of the challenges in sym-
bolic computation. This challenge received a lot of atten-
tion [6, 8, 9, 13, 14, 15, 19, 24, 25, 34]; see [7] for a nice
description of recent methods.

1.2 Numerical Homotopies define Loops

around Singularities

In [31], a new numerical algorithm using homotopy con-
tinuation methods was proposed to decompose a positive

dimensional solution set into irreducible factors. Linear
traces were proposed in [32] to certify a numerical irre-
ducible decomposition. The implementation [33] was ad-
justed to the important special case of factoring one sin-
gle multivariate complex polynomial in [34], see also [8]
and [9].

In this section we outline the idea of exploiting mon-
odromy using homotopies as in [31] to define loops around
singularities. Assume two witness sets (f ,L1,W1) and
(f ,L2,W2) represent the same positive dimensional irre-
ducible component V . Consider the system Hγ,L1,L2

(x, t):

{

f(x) = 0;
(1− t)L1(x) + γtL2(x) = 0.

t ∈ [0, 1] (3)

where γ is a generic nonzero complex number. Then, due
to the generic choice of γ, for a fixed value of t all isolated
solutions to Hγ,L1,L2

(x, t) are all regular. In particular,
these are W1 for t = 0 and W2 for t = 1.

Tracking solutions of Hγ,L1,L2
(x, t) as t varies from 0 to 1

defines a 1-to-1 map φγ,L1,L2
: W1 →W2. The composition

of two such maps defines a permutation of the points of a
witness set. In particular,

πγ,L1,L2
= φγ2,L2,L1

◦ φγ1,L1,L2
(4)

is a permutation of W1. All permutations that arise in
this fashion form a subgroup of the symmetry group acting
on W1 and the orbits of this action are witness sets that
represent irreducible components.

The idea to exploit monodromy first appeared in a the-
oretical complexity study [2]. Although our approach does
not need to know the precise location of the singularities,
one could as in [11] compute those for algebraic curves, see
also the command algcurves[monodromy] in Maple.

The algorithm in [31] collects points connected by loops
into the same witness sets which converge to numerical
representations of the irreducible components. In [32], a
stop criterion for this algorithm was presented, using the
linear trace. We explain this trace test on a system like
cyclic 4-roots. Note that our program works only with
generic points obtained as solutions of (2) and does not
deal with a symbolic polynomial of degree four. Via a
generic projection we map the points in 4-space down to
the plane. If two of the four points belong to the same
irreducible component, there must exist a quadratic poly-
nomial p(x, y) vanishing at those two points and at any
point of the quadratic irreducible factor. The linear trace
is then defined by rewriting p(x, y) as p(x, y(x)):

p(x, y(x)) = (y − y1(x))(y − y2(x)) (5)

= y2 − (y1(x) + y2(x))y + y1(x)y2(x) (6)

= y2 − t1(x)y + t2(x), (7)

where t1(x) is the linear trace. If t1 was not linear, then
deg(p) > 2. So t1(x) = ax + b, for some a and b to be
determined by interpolation at x = x0 and x = x1, with
corresponding y-values in (x0, y01), (x0, y02), (x1, y11), and

2

Algorithm 1.1 Monodromy Breakup certified by Linear Trace: P = Breakup(WL, d,N)
Input: WL, d, N witness set, degree, max #loops
Output: P partitioned witness set
0. initialize P with d singletons; done by manager node
1. generate two slices L′ and L′′ parallel to the given L; broadcast data to all nodes
2. track d paths for witness set with L′; executed in parallel by workers
3. track d paths for witness set with L′′; executed in parallel by workers
4. for k from 1 to N do

4.1 generate new slices K and a random α; broadcast K and α to all nodes
4.2 track d paths defined by Hα,L,K , see (3); executed in parallel by workers
4.3 generate a random β; broadcast β to all nodes
4.4 track d paths defined by Hβ,K,L, see (3); executed in parallel by workers
4.5 compute the permutation and update P ; done by manager node
4.6 if linear trace test certifies P

then leave the loop;
end if;

end for.

(x1, y12). If for an additional sample, at x = x2 with cor-
responding y-values (x2, y21), (x2, y22), we have t1(x2) =
y21 + y22, then we have an irreducible quadratic factor,
otherwise the two points do not lie on the same factor.

The linear trace test, called zero-sum relations, was first
introduced in [28] and further developed in [26, 27]. For
factors of small to moderate degree, the linear trace test
can be applied in an exhaustive combinatorial enumeration
as was proposed in [13, 14, 24], [25] and improved in [6].

1.3 Parallel Algorithms

Homotopy continuation methods are very well suited for
parallel processing as after distributing the path tracking
jobs among the computers in the network, no further com-
munications are needed, see [1, 5, 17] for granularity issues.
For computational algebraic geometry, this implies that
homotopy methods can solve much larger polynomial sys-
tems than methods in computer algebra which are harder
to adapt to parallel computers [22]. One recent exam-
ple is the solution of the cyclic 13-roots problems with
PHoM [10, 16] for which 2,704,156 paths were tracked.

Modern homotopies in numerical algebraic geometry of-
ten appear in a sequence like the Pieri homotopies [39]
where the start solutions of one homotopy lie at the end
of paths defined by another homotopy. The homotopies to
factor positive dimensional solution sets raise job schedul-
ing issues as the decision to certain track paths depends on
the outcome of other paths. This paper can be regarded
as a solution to the job scheduling problems raised in [23].

The parallel algorithm proposed in [23] (described in
pseudo code by Algorithm 1.1) exhibited a good speedup
in the path tracking jobs, but the certification with lin-
ear traces executed only by the manager node before the
scheduling of new path tracking jobs diminished the over-
all performance as all nodes were idling waiting for the
assignment of new path tracking jobs. At the end of [23]
we outlined a probabilistic complexity study simulated in

Maple, suggesting various job scheduling techniques. In
this paper we report on its parallel implementation con-
firming the efficiency of the approach.

2 USING MONODROMY MORE EFFICIENTLY

The monodromy breakup algorithm of [31, 32] is
sketched by Algorithm 1.1. On input is a witness set WL

and on output a partition of WL, corresponding to the
irreducible decomposition.

Our first parallel implementation of this algorithm [23],
described in the right column of Algorithm 1.1, uses a
straightforward manager/worker model in which the man-
ager node distributes the paths among the available proces-
sors in the network. According to our experimental results,
a sizeable speedup is achieved by distributing the routine
path-tracking jobs to different nodes. However, a proba-
bilistic study in [23] suggested that we can save some work
by taking a smaller one-path-one-point tracking job as an
atomic task.

Following the previous discussion, we take two generic
slices L1 and L2 (in this case these are hyperplanes) and
look at the witness points W1 and W2. Consider the bi-
partite graph with vertices W1 on one side and W2 on the
other.

One atomic step of the monodromy breakup algorithm
consists of creating a map like φγ,L1,L2

. We can visualize
such a map by connecting the points of W1 and W2 that
map into each other with an edge, as shown in Figure 1.

As one may see in our example, in order to create one
permutation we need to construct 8 edges in the graph.
If one is lucky then it may take the algorithm only one
permutation to decompose cyclic4, as shown in Figure 2.

The connected components of the graph in Figure 2 cor-
respond to the two witness sets that, in turn, represent
two irreducible components of the solution set of cyclic4:
two quadric curves.

3

v

v

f

f

v

v

f

f

W1 W2

v

f

first quadric

second quadric

-

-

-

-

-
- map φγ,L1,L2-
-

Figure 1: The bipartite graph W1 ↔W2 for cyclic4

v

v

f

f

v

v

f

f

W1 W2

-

-

-

-

¼Y

map φγ,L1,L2

Y¼

-
-

map φγ′,L2,L1

-
-

Y

Y

¼

¼

1

2

3

4

Figure 2: Permutation (12)(34) for cyclic4

In fact 2 out of 8 edges in Figure 2 can be removed keep-
ing the connected components still connected, see Figure 3.
Since each edge can be created by tracking only one point
of a witness set, we may avoid doing extra work by trying
to create as few edges as possible.

v

v

f

f

v

v

f

f

W1 W2

-

-

-

-

Y

¼

1

2

3

4

Figure 3: A 6-edge graph for cyclic4

3 A NEW ALGORITHM

In this section we first describe the sequential version of
our new monodromy breakup algorithm before addressing
its parallel execution.

3.1 Serial Version

The flow chart of our new algorithm is shown in Figure 4.
As in Algorithm 1.1, we also have the initialization of the
“trace grid”, which are the two witness sets on two parallel
slices needed to certify the irreducible decomposition using
linear traces. While Algorithm 1.1 first completes all the
loops for all points in a witness set before proceeding to
the next level, our new approach initializes s new witness
sets which are available for generating loops.
The main loop of the new algorithm shown in Figure 4

leaves much freedom to complete loops between any two
slices. For every slice, the algorithm keeps track of the
number of loops that did not yield a permutation, stored
in Ndis. Based on these statistics, the algorithm can dis-
criminate against slices which were not productive in the
past and select those slices which led to more new permu-
tations.
As explained in the previous section, the algorithm typi-

cally returns with a certified decomposition before all loops
are completed. This is the main reason why on single pro-
cessors, our new algorithm outperforms Algorithm 1.1. At
the same time, the new algorithm is more suitable for par-
allel execution, as we will explain next.

3.2 Parallel Version

The parallel version of our new algorithm runs in a man-
ager/worker model and is presented in Algorithm 3.1.
The initialization phase is very similar to the initial-

ization of the parallel version of Algorithm 1.1, with the
manager distributing path tracking jobs evenly among all
nodes. After the initialization, the manager node keeps
looking for available path tracking nodes to assign paths
and the other nodes are either busy tracking paths or ready
to start new path tracking jobs.
Compared to our previous parallel algorithm described

in [23], the computation of the linear trace by the manager
node is now interleaved by path tracking jobs performed
on the other nodes.

4 EXPERIMENTAL RESULTS

Our algorithms are implemented using the path tracking
routines in PHCpack [38], extended in [33] with facilities
for a numerical irreducible decomposition. As in [39], we
apply MPI for message passing. Our main program is writ-
ten in C and links with the interface of PHCpack.
Our equipment consists of two personal cluster machines

purchased from Rocketcalc (www.rocketcalc.com) for a
total of 12 2.4Ghz CPUs, served by a Dell workstation
with two dual 2.4Ghz processors. So in total we have 14
processors at our disposal.

4

P := {{a} | 1 ≤ a ≤ d, {a} is not an irreducible component};

Q := {{f} | 1 ≤ f ≤ d, {f} is an irreducible component};

construct s witness sets using s random slices;

construct the trace grid, for 2 parallel slices;

Ntot := s× d+ 2× d; Ndis := 0;

?

#P 6= 0? - return (Q, Ntot, Ndis).

choose the smallest p ∈ P ;

choose a label a ∈ p;

choose two slices L1 and L2;

b := track(a, L1, L2); Ntot := Ntot + 1;

find q ∈ P that contains the label b;

q 6= p?

-

-

merge p and q:

P := P ∪ {p ∪ q};

P := P \ {p, q};

is p ∪ q irreducible?

P := P \ {p ∪ q};

Q := Q ∪ {p ∪ q};Ndis := Ndis + 1;

?

?

?

?

?

?

?

no

yes
yes

no

yes

no

?

Figure 4: The flow chart of our new Monodromy Breakup Algorithm

5

Algorithm 3.1 Parallel Monodromy Breakup certified by Linear Trace:
[Q,Ntot, Ndis] = Parallel Breakup(WL, s)

manager worker

input:
WL a witness set;
s #new slices.

output:
Q partition of {1, . . . , d = |WL|}, f ∈ Q is an irreducible component;
Ntot total #paths tracked;
Ndis #paths discarded (produced no new information).

broadcast WL; store WL;
broadcast 2 parallel slices (for linear trace test); store 2 parallel slices;
broadcast s random slices (for monodromy); store s random slices;
for s+ 2 newly created slices do

scatter d start points receive start points;
of solution paths; track solution paths;

gather d end points; (these provide labels to the witness points on new slices) send end points of paths;
end for;
P := {{a} | 1 ≤ a ≤ d, {a} is not an irreducible component};
Q := {{f} | 1 ≤ f ≤ d, {f} is an irreducible component};
Ntot := s× d+ 2× d;Ndis := 0;
while #P 6= 0 do

if a worker is idle then
[a, L1, L2] := Choose(P);
send (a, L1, L2) to worker; receive (a, L1, L2);

end if; b := Track(a, L1, L2);
if a worker is done then

receive b from worker; send b to manager;
Update(a, b, P,Q,Ntot, Ndis);

end if;
end while;
return (Q,Ntot, Ndis).

Subroutines (see also the flow chart in Figure 4):

• [a, L1, L2] := Choose(P) picks a label a and two slices from the set of s+1 slices used for computing monodromy.
Label a has to be in a subset p ∈ P of the smallest size and such that the number of workers employed on tracking
points with labels in p is minimal. The manager stores this number for every p ∈ P . The pair of slices L1,L2 is
chosen to maximize the probability of discovering new information. This is done according to statistics collected
and stored by the manager – we record the number of discarded paths amongst the fixed number of recent paths
tracked between the pair.

• b := Track(a, L1, L2) is the main atomic routine executed by workers which track a continuation path from a
witness point labelled with a in WL1

to produce a witness point in WL2
labelled with b.

• Update(a, b, P,Q,Ntot, Ndis) increments Ntot. If a and b are in the same p ∈ P , then Ndis is incremented.
Otherwise, if it finds q ∈ P that contains b, then p and q are merged in the partition P , and the linear trace test
will tell if p ∪ q is irreducible. If the linear trace test is successful, then p ∪ q is moved from P into the set of
irreducible components Q.

6

4.1 Plain Parallel Path Tracking

In Table 1 we show with three runs the main defect of our
first parallel implementation presented in [23]. While we
have no real control over the number of loops it takes to
complete the factorization, we observe from the data in
Table 1 that as the total number of loops increases, the
work done by the manager node increases.

#loops 4 6 9
manager 1.8 3.8 7.6
min track 8.0 10.9 18.5
max track 10.8 15.7 21.8

total 12.6 19.5 29.4

Table 1: Three runs with the first parallel monodromy
breakup algorithm, executing respectively 4, 6, and 9 loops
to factor a curve of degree 144 defined by the cyclic 8-roots
problem on 14 processors. Times are reported in seconds:
the time spent by the manager certifying the decomposi-
tion and scheduling the jobs; the minimal and maximal
time the nodes spent tracking paths.

Although the cyclic 8-roots system is a problem of mod-
est size, we already observe in Table 1 that for 9 loops,
more than 25% of the time is spent by the manager node,
while all the other nodes are idling. For larger problems
and more processors, the poor performance of this first
implementation will become even more apparent.

4.2 Performance of the new Algorithm

Table 2 reports on five runs done on 14 processors to de-
compose the curve of degree 144 defined by the cyclic 8-
roots system. For three of the five runs we used three
new slices. In the last two runs we see that the total time
decreases if we use only two new slices.

3 new slices 2 new slices
#runs 1 2 3 4 5
initial 8.73 9.01 8.89 6.54 6.98

manager 6.06 6.22 6.18 6.67 7.10
min track 5.96 6.16 6.07 6.60 7.02
max track 6.06 6.24 6.23 6.11 7.15

total 14.9 15.4 15.3 13.4 14.2

Table 2: Five runs with our new parallel monodromy
breakup algorithm, three times with 3 new slices and two
times with 2 new slices, to factor the same curve of degree
144 defined by the cyclic 8-roots problem. We report the
time used for initialization, the time spent by the manager
node, the minimal and maximal time for the nodes spent
tracking paths, and the total time. All reported times are
expressed in seconds.

In Table 2 we see an even distribution of the time spent
by the nodes. Using fewer slices reduces the initialization

time at the expense of a slightly higher running time in
the main loop.
Compared to the timings in Table 1 we do not notice

such a wide fluctuation in the total execution time between
different numbers of loops. The total execution time of the
most favorable situation reported in Table 1 is only slightly
lower than the best total time in Table 2.
Finally, we report on a calculation of a larger example,

the ideal of adjacent 2-by-2 minors of a general 2-by-9 ma-
trix of 18 unknowns, see [12] and [18]. This system in
18 variables defines a 10-dimensional surface of degree 256
which factors in 34 irreducible components. The total exe-
cution time of our new monodromy breakup algorithm on
14 processors is 97.1 seconds, of which 62.7 are spent on
the initialization, 33.8 seconds by the manager node in the
main loop while the time path tracking on the other nodes
fluctuated between 32.9 and 35.6 seconds.
The performance of our first parallel algorithm on this

system is even more erratic. The very best complete run
of 3 monodromy loops took 122.9 seconds on 14 proces-
sors, where the path tracking time ranged between 75.9
and 104.4 seconds. Even on this very best run, our new
algorithm still takes only 80% of the time spent by the first
parallel monodromy breakup algorithm of [23].

5 CONCLUSIONS

In this paper we report on the development and per-
formance of a new monodromy breakup algorithm. Ex-
perimental results show a more predictable and regular
performance than our first parallel implementation of [23].
Due to its finer granularity and the absence of need for

synchronization beyond the initialization stage the new
algorithm exhibits much more even load distribution be-
tween the worker nodes. This together with avoiding track-
ing many redundant paths results in a performance supe-
rior to that of the previously used approach.

Acknowledgments. The authors thank the referees for
their helpful and constructive comments.

REFERENCES

[1] D.C.S. Allison, A. Chakraborty, and L.T. Watson.
Granularity issues for solving polynomial systems via
globally convergent algorithms on a hypercube. J. of
Supercomputing, 3:5–20, 1989.

[2] C. Bajaj, J. Canny, T. Garrity, and J. Warren. Factor-
ing rational polynomials over the complex numbers.
SIAM J. Comput., 22(2):318–331, 1993.

[3] G. Björck. Functions of modulus one on Zp whose
Fourier transforms have constant modulus. In J. Sz-
abados and K. Tandori, editors, Proceedings of the Al-
fred Haar Memorial Conference, Budapest, volume 49

7

of Colloquia Mathematica Societatis János Bolyai,
pages 193–197. North Holland, 1985.

[4] G. Björck. Functions of modulus one on Zn

whose Fourier transforms have constant modulus, and
“cyclic n-roots”. In J.S. Byrnes and J.F. Byrnes, edi-
tors, Recent Advances in Fourier Analysis and its Ap-
plications, volume 315 of NATO Adv. Sci. Inst. Ser.
C: Math. Phys. Sci., pages 131–140. Kluwer, 1989.

[5] A. Chakraborty, D.C.S. Allison, C.J. Ribbens, and
L.T. Watson. The parallel complexity of embedding
algorithms for the solution of systems of nonlinear
equations. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(4):458–465, 1993.

[6] G. Chèze. Absolute polynomial factorization in two
variables and the knapsack problem. In J. Gutierrez,
editor, Proceedings of the 2004 International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC
2004), pages 87–94. ACM, 2004.

[7] G. Chèze and A. Galligo. Four lectures on polyno-
mial absolute factorization. In A. Dickenstein and I.Z.
Emiris, editors, Solving Polynomial Equations: Foun-
dations, Algorithms, and Applications, volume 14 of
Algorithms and Computation in Mathematics, pages
339–392. Springer–Verlag, 2005.

[8] R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M.
Watt. A geometric-numeric algorithm for factoring
multivariate polynomials. In T. Mora, editor, Proceed-
ings of the 2002 International Symposium on Symbolic
and Algebraic Computation (ISSAC 2002), pages 37–
45. ACM, 2002.

[9] R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S.
Kotsireas, and S.M. Watt. Towards factoring bivari-
ate approximate polynomials. In B. Mourrain, editor,
Proceedings of the 2001 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2001),
pages 85–92. ACM, 2001.

[10] Y. Dai, S. Kim, and M. Kojima. Computing all non-
singular solutions of cyclic-n polynomial using poly-
hedral homotopy continuation methods. J. Comput.
Appl. Math., 152(1-2):83–97, 2003.

[11] B. Deconinck and M. van Hoeij. Computing Riemann
matrices of algebraic curves. Physica D, 152:28–46,
2001.

[12] P. Diaconis, D. Eisenbud, and B. Sturmfels. Lattice
walks and primary decomposition. In B.E. Sagan and
R.P. Stanley, editors, Mathematical Essays in Honor
of Gian-Carlo Rota, volume 161 of Progress in Math-
ematics, pages 173–193. Birkhäuser, 1998.

[13] A. Galligo and D. Rupprecht. Semi-numerical deter-
mination of irreducible branches of a reduced space
curve. In B. Mourrain, editor, Proceedings of the

2001 International Symposium on Symbolic and Al-
gebraic Computation (ISSAC 2001), pages 137–142.
ACM, 2001.

[14] A. Galligo and D. Rupprecht. Irreducible decomposi-
tion of curves. J. Symbolic Computation, 33(5):661–
677, 2002.

[15] X.-S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi.
Approximate factorization of multivariate polynomi-
als via differential equations. In J. Gutierrez, editor,
Proceedings of the 2004 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2004),
pages 167–174. ACM, 2004.

[16] T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fuji-
sawa, and T. Mizutani. PHoM – a polyhedral ho-
motopy continuation method for polynomial systems.
Computing, 73:55–77, 2004.

[17] S. Harimoto and L.T. Watson. The granularity of
homotopy algorithms for polynomial systems of equa-
tions. In G. Rodrigue, editor, Parallel processing for
scientific computing, pages 115–120. SIAM, 1989.

[18] S. Hoşten and J. Shapiro. Primary decomposition of
lattice basis ideals. Journal of Symbolic Computation,
29(4&5):625–639, 2000.

[19] Y. Huang, W. Wu, H.J. Stetter, and L. Zhi. Pseud-
ofactors of multivariate polynomials. In C. Traverso,
editor, Proceedings of the 2000 International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC
2000), pages 161–168. ACM, 2000.

[20] E. Kaltofen. Challenges of symbolic computation: my
favorite open problems. J. Symbolic Computation,
29(6):891–919, 2000.

[21] D. Lazard. A new method for solving algebraic sys-
tems of positive dimension. Discrete Applied Mathe-
matics, 33(1–3):147–160, 1991.

[22] A. Leykin. On parallel computation of Gröbner bases.
In Y. Yang, editor, Proceedings of the 2004 Interna-
tional Conference on Parallel Processing Workshops,
15-18 August 2004, Montreal, Quebec, Canada. High
Performance Scientific and Engineering Computing,
pages 160–164. IEEE Computer Society, 2004.

[23] A. Leykin and J. Verschelde. Factoring solution sets
of polynomial systems in parallel. In Tor Skeie and
Chu-Sing Yang, editors, Proceedings of the 2005 In-
ternational Conference on Parallel Processing Work-
shops. 14-17 June 2005. Oslo, Norway. High Perfor-
mance Scientific and Engineering Computing, pages
173–180. IEEE Computer Society, 2005.

[24] D. Rupprecht. Semi-numerical absolute factorization
of polynomials with integer coefficients. J. Symbolic
Computation, 37(5), 2004.

8

[25] T. Sasaki. Approximate multivariate polynomial fac-
torization based on zero-sum relations. In B. Mour-
rain, editor, Proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation
(ISSAC 2001), pages 284–291. ACM, 2001.

[26] T. Sasaki, T. Saito, and T. T. Hilano. Analysis of
approximate factorization algorithm i. Japan J. of
Industrial and Applied Math., 9:351–368, 1992.

[27] T. Sasaki and M. Sasaki. A unified method for multi-
variate polynomial factorizations. Japan J. of Indus-
trial and Applied Math., 10:21–39, 1993.

[28] T. Sasaki, M. Suzuki, M. Kolár, and M. Sasaki. Ap-
proximate factorization of multivariate polynomials
and absolute irreducibility testing. Japan J. of In-
dustrial and Applied Math., 8:357–375, 1991.

[29] A.J. Sommese and J. Verschelde. Numerical homo-
topies to compute generic points on positive dimen-
sional algebraic sets. J. of Complexity, 16(3):572–602,
2000.

[30] A.J. Sommese, J. Verschelde, and C.W. Wampler. Nu-
merical decomposition of the solution sets of polyno-
mial systems into irreducible components. SIAM J.
Numer. Anal., 38(6):2022–2046, 2001.

[31] A.J. Sommese, J. Verschelde, and C.W. Wampler. Us-
ing monodromy to decompose solution sets of polyno-
mial systems into irreducible components. In C. Cilib-
erto, F. Hirzebruch, R. Miranda, and M. Teicher,
editors, Application of Algebraic Geometry to Cod-
ing Theory, Physics and Computation, pages 297–315.
Kluwer Academic Publishers, 2001. Proceedings of
a NATO Conference, February 25 - March 1, 2001,
Eilat, Israel.

[32] A.J. Sommese, J. Verschelde, and C.W. Wampler.
Symmetric functions applied to decomposing solution
sets of polynomial systems. SIAM J. Numer. Anal.,
40(6):2026–2046, 2002.

[33] A.J. Sommese, J. Verschelde, and C.W. Wampler. Nu-
merical irreducible decomposition using PHCpack. In
M. Joswig and N. Takayama, editors, Algebra, Geom-
etry, and Software Systems, pages 109–130. Springer–
Verlag, 2003.

[34] A.J. Sommese, J. Verschelde, and C.W. Wampler. Nu-
merical factorization of multivariate complex polyno-
mials. Theoretical Computer Science, 315(2-3):651–
669, 2004. Special Issue on Algebraic and Numerical
Algorithms edited by I.Z. Emiris, B. Mourrain, and
V.Y. Pan.

[35] A.J. Sommese and C.W. Wampler. Numerical alge-
braic geometry. In J. Renegar, M. Shub, and S. Smale,
editors, The Mathematics of Numerical Analysis, vol-
ume 32 of Lectures in Applied Mathematics, pages

749–763. AMS, 1996. Proceedings of the AMS-SIAM
Summer Seminar in Applied Mathematics. Park City,
Utah, July 17-August 11, 1995, Park City, Utah.

[36] A.J. Sommese and C.W. Wampler. The Numerical so-
lution of systems of polynomials arising in engineering
and science. World Scientific, 2005.

[37] M. van Hoeij. Factoring polynomials and the knap-
sack problem. Journal of Number Theory, 95:167–189,
2002.

[38] J. Verschelde. Algorithm 795: PHCpack: A
general-purpose solver for polynomial systems by
homotopy continuation. ACM Trans. Math.
Softw., 25(2):251–276, 1999. Software available at
http://www.math.uic.edu/~jan.

[39] J. Verschelde and Y. Wang. Computing feedback
laws for linear systems with a parallel Pieri homotopy.
In Y. Yang, editor, Proceedings of the 2004 Interna-
tional Conference on Parallel Processing Workshops,
15-18 August 2004, Montreal, Quebec, Canada. High
Performance Scientific and Engineering Computing,
pages 222–229. IEEE Computer Society, 2004.

[40] W.T. Wu. Basic principles of mechanical theorem
proving in elementary geometries. Journal of Auto-
mated Reasoning, 2(3):221–252, 1986.

9

