Computing Tropical Prevarieties in Parallel

Jan Verschelde1
joint work with Anders Jensen2 and Jeff Sommars1

1University of Illinois at Chicago
2Aarhus University

The 8th International Workshop on Parallel Symbolic Computation,
23–24 July 2017, Kaiserslautern, Germany.
Outline

1 introduction
 - problem statement
 - software contributions

2 algorithms
 - half open cones
 - static enumeration
 - dynamic enumeration

3 software
 - parallel algorithms
 - computational results
power series as solutions of polynomial systems

The Newton-Puiseux algorithm on a polynomial f in two variables computes power series expansions for the plane algebraic curve.

The leading powers of the expansions are computed as vectors perpendicular to the edges of the Newton polyhedron P of f.

Generalize the Newton-Puiseux algorithm:

- Each face of P has a normal cone C: all nonzero vectors which make the same minimal inner product with all points in the face.
- The tropical hypersurface T of f is the set of all normal cones that are not maximal, i.e.: no cones normal to vertices.
- Given a tuple \mathbf{f} of polynomials, the tropical prevariety is the intersection of all tropical hypersurfaces of $f \in \mathbf{f}$.

Our problem: compute the tropical prevariety in parallel.
background literature

Two key publications:

software

The mixed volume of the Newton polytopes is a generically sharp upper bound on the number of isolated solutions in $\mathbb{C} \setminus \{0\}^n$.

Implementations of dedicated algorithms for mixed volumes:

- Mixvol, Ioannis Emiris, 1993
- PHCpack, Jan Verschelde, 1999
- MixedVol, Tangan Gao, Tien-Yien Li, and Mengnien Wu, 2005
- DEMiCs, Tomohiko Mizutani and Akiko Takeda, 2008
- DEMiCs = Dynamic Enumeration of Mixed Cells
- pss 5, Gregorio Malajovich, 2015
- Gfan 0.6, Anders Jensen, 2016

Software for tropical computations:

- Gfan, Anders Jensen, 2006
our contributions

1. Application of dynamic enumeration to the computation of the half open cones in the tropical prevariety.
2. A parallel shared memory implementation with work stealing.
3. Computed the tropical prevariety of cyclic 16-roots.
A half open cone at a vertex \(a \) of \(P \) is defined as follows. For each edge \(e \) incident to \(a \), construct an inequality:

- if \(e \) is outgoing, then the inequality is strict,
- if \(e \) is ingoing, then the inequality is not strict.
constructing half open cones

Algorithm 1 Partition a full dimensional cone in half open cones

Input: An inequality description of a full dimensional half open cone C.
Output: A collection of disjoint half open cones with union equal to the boundary of C.

function CREATE HALF OPEN CONES(C)

if C has only strict constraints then return \emptyset
else
 Choose a non-strict constraint c of C
 5: $C_\prec := C$ but with c being strict
 $C_\equiv := C$ but with c being an equation
 return $C_\equiv \cup$ CreateHalfOpenCones(C_\prec)
end if
end function
a partition into four half open cones
F_i is a list of normal cones $C_{i,j}$ of the ith Newton polytope.
Algorithm 2 Static enumeration

Input: A list F of fans $F_1, \ldots F_N$ in \mathbb{R}^n where each F_i is represented by a list of cones covering the support of F_i.

Output: A list of cones covering the support of $F_1 \land \cdots \land F_N$.

procedure STATICENUMERATION(Cone C, Index i)
 if $C \neq \emptyset$ then
 if $i > |F|$ then
 Output C
 else
 for each cone D in F_i do
 STATICENUMERATION($C \cap D$, $i + 1$)
 end for
 end if
 end if
end procedure

STATICENUMERATION(\mathbb{R}^n, 1)
dynamic enumeration

Apply a greedy search to minimize the number of intersections:

1. Select the fan with the fewest cones at the start.
2. Use information of pairwise cone intersections.
Algorithm 3 Dynamic enumeration

Input: A list F of fans F_1, \ldots, F_N in \mathbb{R}^n where each F_i is represented by a list of cones covering the support of F_i.

Output: A list of cones covering the support of $F_1 \wedge \cdots \wedge F_N$.

procedure DYNAMIC_ENUMERATION(Cone C, Set I)
 if $C \neq \emptyset$ then
 if $I = \emptyset$ then
 Output C
 else
 Greedily choose index $i \in I$.
 for each cone D in F_i do
 DYNAMIC_ENUMERATION($C \cap D$, $I \setminus \{i\}$)
 end for
 end if
 end if
end procedure

DYNAMIC_ENUMERATION(\mathbb{R}^n, \{1, \ldots, |F|\})
To implement the “Greedily choose index” we apply relation tables:
- introduced by T. Gao and T.Y. Li in 2003;
- store whether or not pairs of cones could intersect.

Denote $C_{i,j}$ the jth cone of fan $T(P_i)$.

For a cone C of fan $T(P)$, the relation table $R(i,j)$ is a boolean array

$$R(i,j) = \begin{cases}
1, & \text{if } C \cap C_{i,j} \neq \emptyset, \\
0, & \text{if } C \cap C_{i,j} = \emptyset, \\
0, & \text{if } P = P_i.
\end{cases}$$

where $1 \leq i \leq N$ and $1 \leq j \leq \#\text{Edges}(P_i)$.
Algorithm 4 Greedy choice of index

procedure DYNAMICENUMERATION(Cone C, Set I)
 ... omitted code is the same as before ...
 Choose index $i \in I$ such that F_i has fewest cones which C could intersect.
 5: for each cone D in F_i do
 if C’s relation table allows $C \cap D \neq \emptyset$ then
 Intersect C’s relation table with D’s relation table, and store on $C \cap D$
 DYNAMICENUMERATION($C \cap D$, $I \setminus \{i\}$)
 10: end if
end for
end procedure

Compute relation tables for \mathbb{R}^n and the cones in F
DYNAMICENUMERATION(\mathbb{R}^n, $\{1, \ldots, |F|\}$)
the Parma Polyhedral Library (PPL)

Our first algorithms (in CASC 2016) are implemented in Sage.

Enea Zaffanella developed a thread safe version of PPL.

- Exact arithmetic with arbitrary precision integers (GMP).
- Improved speedups are achieved using the allocator TCMalloc.
We distinguish three stages:

1. **Compute all vertex points of all Newton polytopes.**
 For small Newton polytopes spanned by relatively few monomials, this stage takes less than a second for a single thread.

2. **Parallel computation of the relation tables.**
 We intersect all pairs of cones, processing a job queue. One job is the intersection of two polyhedral cones.

3. **Parallel dynamic enumeration.**
 - Coarse grained by forking processes, dividing cones of the first fan, is inefficient due to the difference in work loads.
 - The application of work stealing gives good results.
iterative version of dynamic enumeration

A parallel implementation needs a job queue, provided by an iterative version of the algorithm.

Algorithm 5 Iterative version of dynamic enumeration — initialization

Input: A list of fans F_1, \ldots, F_N in \mathbb{R}^n where each F_i is represented by a list of cones covering the support of F_i.

Output: A list of cones covering the support of $F_1 \land \cdots \land F_N$.

Compute relation tables
$F :=$ fan with fewest cones
Cones := Cones from F
while Cones $\neq \emptyset$ do
5: ... code executed by the main loop ...
end while

The “Cones” is the job queue.
Algorithm 6 Iterative version of dynamic enumeration — main loop

\begin{algorithm}
\While{Cones \neq \emptyset} {
 \State $C :=$ remove an element from Cones
 Choose fan F' not used to produce C such that F' has fewest cones with which C could intersect.
 \For{each cone D in F'} {
 \If{C's relation table allows $C \cap D \neq \emptyset$} {
 Compute $C \cap D$
 \If{$C \cap D \neq \emptyset$} {
 \If{$C \cap D$ used all fans} {
 Output $C \cap D$
 } \Else {
 Intersect C's relation table with D's relation table, and store on $C \cap D$
 Add $C \cap D$ to Cones
 }
 }
 }
 }
}
\end{algorithm}
work stealing

We use the parallel runtime library provided by PPL.

- Each thread has its own job queue.
- If there are p threads, numbered from 1 to p, then the ith thread looks to steal from the threads in the order:

$$i + 1, i + 2, \ldots, p, 1, 2, \ldots, i - 1.$$
hardware and software

We compare against Gfan which contains an implementation of a variant of the dynamic enumeration algorithm.

Gfan timings are for a single thread running on an Intel Xeon E2670. SoPlex (Wunderling, 1996) was enabled in Gfan, providing a speed up of roughly a factor 3.

Except for the Gfan timings, all computations were done on a 2.2 GHz Intel Xeon E5-2699 processor in a CentOS Linux workstation with 256 GB RAM using varying numbers of threads.
The cyclic 16-roots problem is an academic benchmark problem.

\[
\begin{align*}
 x_0 + x_1 + \cdots + x_{n-1} &= 0 \\
 i = 2, 3, \ldots, n-1 : \sum_{j=0}^{n-1} \prod_{k=j}^{j+i-1} x_k \mod n &= 0 \\
 x_0x_1x_2 \cdots x_{n-1} - 1 &= 0.
\end{align*}
\]

Specifics for $n = 16$:

- By Backelin’s lemma, there is a 3-dimensional solution set.

- DEMiCs computed the mixed volume 135,555,072. This result was published in 2008.
number of cone intersections

<table>
<thead>
<tr>
<th>n</th>
<th>static enumeration</th>
<th>dynamic enumeration</th>
<th>number of rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>114</td>
<td>114</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>682</td>
<td>676</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2,286</td>
<td>2,254</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7,397</td>
<td>7,163</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>19,619</td>
<td>18,315</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td>63,109</td>
<td>50,584</td>
<td>276</td>
</tr>
<tr>
<td>10</td>
<td>269,223</td>
<td>160,203</td>
<td>712</td>
</tr>
<tr>
<td>11</td>
<td>1,625,520</td>
<td>827,469</td>
<td>2,244</td>
</tr>
<tr>
<td>12</td>
<td>11,040,912</td>
<td>5,044,441</td>
<td>5,582</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>36,633,391</td>
<td>14,872</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>264,463,730</td>
<td>49,114</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1,852,158,881</td>
<td>145,276</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>13,715,434,028</td>
<td>527,126</td>
</tr>
</tbody>
</table>
Timings

<table>
<thead>
<tr>
<th>n</th>
<th>Gfan</th>
<th>1 thread</th>
<th>10 threads</th>
<th>20 threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.020s</td>
<td>0.008s</td>
<td>0.017s</td>
<td>0.028s</td>
</tr>
<tr>
<td>5</td>
<td>0.058s</td>
<td>0.036s</td>
<td>0.053s</td>
<td>0.073s</td>
</tr>
<tr>
<td>6</td>
<td>0.22s</td>
<td>0.10s</td>
<td>0.11s</td>
<td>0.16s</td>
</tr>
<tr>
<td>7</td>
<td>0.64s</td>
<td>0.29s</td>
<td>0.26s</td>
<td>0.37s</td>
</tr>
<tr>
<td>8</td>
<td>2.87s</td>
<td>0.79s</td>
<td>0.49s</td>
<td>0.70s</td>
</tr>
<tr>
<td>9</td>
<td>13.0s</td>
<td>2.8s</td>
<td>1.2s</td>
<td>1.4s</td>
</tr>
<tr>
<td>10</td>
<td>1m22s</td>
<td>9.8s</td>
<td>4.4s</td>
<td>3.7s</td>
</tr>
<tr>
<td>11</td>
<td>9m17s</td>
<td>50s</td>
<td>16.8s</td>
<td>20.3s</td>
</tr>
<tr>
<td>12</td>
<td>82m33s</td>
<td>5m2s</td>
<td>1m5s</td>
<td>1m3s</td>
</tr>
<tr>
<td>13</td>
<td>46m59s</td>
<td>8m30s</td>
<td>6m20s</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6h22m56s</td>
<td>67m31s</td>
<td>46m37s</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10h25m45s</td>
<td>7h43m57s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>84h20m37s</td>
<td>62h36m31s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the number of maximal cones

A maximal cone is not contained in any other cone.

The number of maximal cones by dimension of cyclic 16-roots:

<table>
<thead>
<tr>
<th>dim</th>
<th>#cones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>768</td>
</tr>
<tr>
<td>3</td>
<td>114,432</td>
</tr>
<tr>
<td>4</td>
<td>1,169,792</td>
</tr>
<tr>
<td>5</td>
<td>1,007,616</td>
</tr>
<tr>
<td>6</td>
<td>2,443,136</td>
</tr>
<tr>
<td>7</td>
<td>4,743,904</td>
</tr>
<tr>
<td>8</td>
<td>109,920</td>
</tr>
</tbody>
</table>