
Homotopy Methods for Solving Polynomial Systems

tutorial at ISSAC’05, Beijing, China, 24 July 2005

Jan Verschelde∗

draft of March 15, 2007

Abstract

Homotopy continuation methods provide symbolic-numeric algorithms to solve polynomial systems.
We apply Newton’s method to follow solution paths defined by a family of systems, a so-called ho-
motopy. The homotopy connects the system we want to solve with an easier to solve system. While
path following algorithms are numerical algorithms, the creation of the homotopy can be viewed as a
symbolic operation. The performance of the homotopy continuation solver is primarily determined by
its ability to exploit structure of the system. The focus of this tutorial is on linking recent algorithms
in numerical algebraic geometry to the software package PHCpack.

Contents

1 Introduction 2

2 Lecture I: Root Counting and Homotopy Methods 2

2.1 Deformation Methods avoid the Discriminant Variety . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Product Structures generalize Bézout’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Newton Polytopes model Sparse Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Isolated Singularities computed by Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Lecture II: Numerical Irreducible Decomposition 17

3.1 Witness Sets represent Pure Dimensional Solution Sets . . . . . . . . . . . . . . . . . . . . . 18

3.2 A Cascade of Homotopies to Compute Witness Supersets . . . . . . . . . . . . . . . . . . . 21

3.3 Factoring Solution Sets into Irreducible Components . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Diagonal Homotopies to Intersect Pure Dimensional Solution Sets . . . . . . . . . . . . . . 26

4 Lecture III: Software and Applications 28

4.1 Examples, Applications, Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Using phc in blackbox or toolbox mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 PHCmaple: A Maple Interface to PHCpack . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Parallel PHCpack calls phc from C programs . . . . . . . . . . . . . . . . . . . . . . . . . . 29

∗Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 South Mor-
gan (M/C 249), Chicago, IL 60607-7045, USA. Email: jan@math.uic.edu or jan.verschelde@na-net.ornl.gov. URL:

http://www.math.uic.edu/˜jan. This material is based upon work supported by the National Science Foundation under
Grant No. 0134611 and Grant No. 0410036.

1



1 Introduction

The prerequisites for this tutorial is a basic introductory course in numerical analysis. We assume famil-
iarity with concepts as numerical stability and conditioning. Newton’s method in several variables is our
point of departure.

The goal of the tutorial is to sketch the main algorithms in numerical algebraic geometry. For every
algorithm, we outline its input-output specifications and illustrate it by means of an exercise. Every
algorithm is justified by a theorem, which defines the conditions in which the algorithm is to be applied.
Every algorithm is validated by software, we show how to make use of the algorithms in PHCpack.

The tutorial is divided in three lectures. In the first lecture, we concentrate on computing approxima-
tions to all isolated solutions of a polynomial system and assume that our input is a square polynomial
systems. The “square” here means having as many equations as unknowns. In the second lecture we
lift this restriction, allowing more or less equations than the number of unknowns, and study numerical
homotopy methods to compute all positive dimensional solution sets of a polynomial systems, in particular
we compute a numerical irreducible decomposition. The third lecture is a hands-on session. After a brief
introduction to phc, we return to the exercises corresponding to the algorithms of the first two lectures.

The focus of these tutorial notes lies on linking the algorithms in numerical algebraic geometry to the
software package PHCpack. For further reading and a more detailed description, the recent book [119] is
strongly recommended.

Acknowledgments. I thank the organizers of ISSAC’05 for the opportunity of presenting this tutorial.
I am grateful to Kathy Piret and Yan Zhuang for their comments and for working through the exercises.
Thanks to Yun Guan for carefully reading through this draft. I am also grateful to Karl Schmedders for
pointing out errors.

2 Lecture I: Root Counting and Homotopy Methods

The goal of the first lecture is to sketch the main algorithms to compute all isolated solutions of a polynomial
system using numerical homotopy continuation methods. This lecture is divided in four parts.

Homotopy continuation methods are globally convergent and exhaustive solvers, i.e: they find all
isolated solutions. We show that – using complex arithmetic – with probability one the solution paths
defined by the homotopy avoid the discriminant variety, except perhaps at the very end of the paths if
the system to be solved has singular solutions. In the second and third part of the lecture we emphasize
the analogy between root counting and homotopy methods. Generalizations of Bézout’s theorem lead to
linear-product start systems. The sparse structure of a polynomial system is modeled by a tuple of Newton
polytopes. Polyhedral homotopies are optimal for systems with generic coefficients and have yielded fully
automatic blackbox solvers. The last part of this lecture sketches recent algorithms to compute isolated
singularities accurately restoring the quadratic convergence of Newton’s method by deflation. Once the
accurate location of the isolated singular root is known, we can compute the generators for the dual space
and the multiplicity of the root.

2.1 Deformation Methods avoid the Discriminant Variety

Definition 2.1 We consider a polynomial system f(x) = 0 of N equations f = (f1, f2, . . . , fN) in n

variables x = (x1, x2, . . . , xn) with complex coefficients, fi(x) ∈ C[x], for i = 1, 2, . . . , N . A polynomial
p ∈ C[x] is a finite sum of terms cax

a. Each term is the product of a coefficient ca ∈ C and a monomial
xa = xa1

1 xa2

2 · · ·xan
n . The Jacobian matrix of the system f(x) = 0 is the matrix of all first partial derivatives,

denoted by ∂f
∂x =

[
∂fi

∂xj

]
, for i = 1, 2, . . . , N and j = 1, 2, . . . , n.

2



Algorithm 2.1 Newton’s method

Input: f(x) = 0, a system of equations;
x0 is an initial guess for the solution.

Output: x∗ is a more accurate approximation for the solution.
Implementation: phc -v.

Newton’s method is also called the method of Newton-Raphson. When the system has more equations
than unknowns, the method becomes known as the Gauss-Newton method, using least squares to solve
the overdetermined linear systems.

Example 2.1 Consider the system (from [95]) and its Jacobian matrix:

f(x1, x2) =

{
x2

1 + x2 − 3 = 0
x1 + 0.125x2

2 − 1.5 = 0

∂f

∂x
(x1, x2) =

[
2x1 1
1 0.25x2

]
. (1)

One step in Newton’s method starting at x0 = (a, b) is computed by solving a linear system for the update
vector ∆x, which is then added to x0 to obtain a new approximation x1:

∂f

∂x
(x0)∆x = −f(x0) x1 = x0 +∆x. (2)

For some norm || · ||, ||f(x0)|| (also called the residual) measures the backward error, i.e.: how much
one should change the coefficients of f to have x0 as the exact solution. The condition number C of
the Jacobian matrix ∂f

∂x (x
0) measures the forward error, i.e.: if the coefficients are given with m digits

precision, then the error on x0 can be as large as C10−m. ¦

Theorem 2.1 (quadratic convergence of Newton’s method) If the Jacobian matrix of f is regular
at the root x∗ and the initial guess x0 is sufficiently close to x∗, then the sequence of approximations xk

produced by Newton’s method converges quadratically to the root x∗.

Exercise 2.1 Consider again the system (1). The system has two solutions (counted with multiplicity):
(−3,−6) and (1, 2). Which one of the two roots is regular? Starting at (−2.999,−5.999) and (0.999, 1.999)
respectively, how many iterations does Newton’s method take to get 32 decimal places correctly? ¦

Definition 2.2 To solve a target system f(x) = 0, we construct a start system g(x) = 0 and define the
artificial-parameter homotopy

h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C, t ∈ [0, 1]. (3)

The constant γ is a random constant number, also called the accessibility constant. The t is the continuation
parameter and varies from 0 to 1, deforming the start system g into the target system f .

Algorithm 2.2 predictor-corrector method

Input: h(x, t) = 0, a homotopy;
x0: h(x0, 0) = 0, a start solution.

Output: x1: h(x1, 1) = 0, target solution.
Implementation: phc -p.

Example 2.2 Consider again the system (1). Since the two equations are both quadrics, a natural choice
for a homotopy is

h(x, t) =

(
x2

1 − 1 = 0
x2

2 − 1 = 0

)
(1− t) +

(
x2

1 + x2 − 3 = 0
x1 + 0.125x2

2 − 1.5 = 0

)
t = 0. (4)

3



At t = 0, we can easily compute the four solutions of the start system h(x, 0) = 0. As we move t away
from zero, we use Newton’s method to extend the corresponding solutions of h(x, t) = 0 until we reach
t = 1. However, at t ≈ 0.92, there are singular solutions and the path tracker will fail. This example is
small enough so we compute all values for t for which the system has singular solutions, with the Maple
9.5 instructions below:

[> f := [x^2 + y - 3, x + 1/8*y^2 - 3/2]; # target system

[> g := [x^2 - 1, y^2 - 1]; # start system

[> h := [g[1]*(1-t) + f[1]*t,g[2]*(1-t) + f[2]*t]; # homotopy

[> dh := Matrix(2,2,[[diff(h[1],x),diff(h[1],y)],

[diff(h[2],x),diff(h[2],y)]]); # Jacobian matrix

[> d := LinearAlgebra[Determinant](dh);

[> gb := Groebner[gbasis]([h[1],h[2],d],plex(x,y,t)); # eliminate x,y

[> fsolve(gb[1],t,complex); # solve the equation in t

Since at t = 0, the start system has only regular solutions, after eliminating x and y we must end up with
a nonzero polynomial in t, so there are only finitely many singularities along the solution paths defined by
h(x, t) = 0. The homotopy is not good if those singularities occur for t between 0 and 1. ¦

The homotopy (4) is a bad homotopy because we took γ to be one, which is far from being a random
complex number. The Maple calculations in Example 2.2 illustrate the main theorem of elimination theory,
which is applied in the proof of the next theorem.

Theorem 2.2 (the gamma trick) Denote the start system in the homotopy by g(x) = h(x, 0) = 0 and
the target system by f(x) = h(x, 1) = 0. For almost all choices of a complex constant γ, all solution paths
defined by the homotopy h(x, t) = γ(1− t)g(x) + tf(x) = 0 are regular, i.e.: for all t ∈ [0, 1), the Jacobian
matrix of h(x, t) is regular and no path diverges.

Exercise 2.2 Consider again the system (1). Use phc -b to solve it. Look at the output file for #iter
to see the number of iterations with Newton’s method. You will see a difference between the number of
iterations for paths converging to the solutions (−3,−6) and (1, 2). Can you relate these differences with
your findings in Exercise 2.1? In the output file of phc -b, look which value for γ has been generated. As
in Example 2.2, calculate the discriminant for the homotopy used by phc -b. ¦

Definition 2.3 In many practical applications we consider a system as f(x,y) = 0. In addition to the
n variables x, the system f(x,y) = 0 has m parameters y, which are meaningful to the application. The
system f(x,y) = 0 then naturally defines a natural-parameter homotopy. In addition to the equations in
f , often we encounter side conditions, which may not be explicitly, but implicitly defined by polynomial
equations. The union of all algebraic sets defined by those side conditions is denoted by U .

Example 2.3 In [29], the authors study an application from molecular chemistry

f(x1, x2, x3) =





0.5(x2
2 + 4x2x3 + x2

3) + a(x2
2x

2
3 − 1) = 0

0.5(x2
3 + 4x3x1 + x2

1) + a(x2
3x

2
1 − 1) = 0

0.5(x2
1 + 4x1x2 + x2

2) + a(x2
1x

2
2 − 1) = 0

(5)

where a is a parameter. The system is also discussed on page 391 and following in [121]. For generic
choices of the parameter a, there are 16 regular isolated solutions. ¦

Algorithm 2.3 coefficient-parameter polynomial continuation

Input: f(x,y) = 0, system with parameters y;

4



x0: f(x0,y0) = 0, a start solution;
y0, target values for the parameters.

Output: x1: f(x1,y1) = 0, target solution.
Implementation: phc -p.

Theorem 2.3 (generic root count) For almost all choices of the parameters y of the system f(x,y) = 0,
the number of isolated solutions in Cn \ U is the same constant, denote it by N . For any choice of the
parameters y, the system f(x,y) = 0 has at most N isolated solutions in Cn \ U .

Exercise 2.3 Consider again the system in (5). Pick a random complex number for the parameter a and
verify with phc -b that there are 16 regular isolated solutions in general. Now choose a particular value
for a, anything you like, and use the system you just solved as start system to compute the solutions for
the particular instance of a. ¦

Bibliographic Notes. The second part of [11] gives a geometric perspective on the theory for finding
zeros of polynomial systems, starting with Newton’s method and covering condition numbers of homotopies.
Path following methods are covered in [2, 3, 4, 5], see also [83] and [141, 142, 143]. The idea of coefficient-
parameter polynomial continuation appeared in [88, 89], generalizing cheater homotopies [75], see also [78].

2.2 Product Structures generalize Bézout’s Theorem

One can view the theorem of Bézout as the fundamental theorem of algebraic geometry. In this section we
show how apply this theorem using multidegrees. Consider for example the eigenvalue problem Ax = λx.
Instead of viewing this as a system of quadratic equations, one better separates the eigenvalue λ from the
eigenvector x to exploit the linearity (degree one) in x and λ.

Definition 2.4 Consider a partition of the variables x,

x = (x1,x2, . . . ,xn) = ((x1,1, x1,2, . . . , x1,n1
), (x2,1, x2,2, . . . , x2,n2

), . . . , (xk,1, xk,2, . . . , xk,nk
)). (6)

For a polynomial p in x, we define the degree of p in xi (also called the multidegree) as

deg(p,xi) = deg(p(x1 = c1, . . . ,xi−1 = ci−1,xi,xi+1 = ci+1, . . . ,xn = cn)), (7)

for random choices of c1 ∈ Cn1 , c2 ∈ Cn2 , . . ., cn ∈ Cnk . For the system f(x) = 0, f = (f1, f2, . . . , fn), and
partition n = n1 + n2 + · · ·+ nk, define the n-by-k degree matrix A as Aij = deg(fi,xj), for i = 1, 2, . . . , n
and j = 1, 2, . . . , k. The permanent per(A, (n1, n2, . . . , nk)) is the sum of all possible products of n1

elements of column 1 with n2 elements of column 2, . . ., with nk elements of column k, each time taking
exactly one element from each row.

Algorithm 2.4 compute the permanent of a degree matrix

Input: a partition of n: n = n1 + n2 + · · ·+ nk, ni > 0;
A is an n-by-k matrix.

Output: per(A, (n1, n2, . . . , nk)) is the permanent of A.
Implementation: phc -r.

Theorem 2.4 (multihomogeneous Bézout bound) Let n = n1 +n2+ · · ·+nk be a partition of x and
A be the corresponding degree matrix of a system f(x) = 0. The permanent per(A, (n1, n2, . . . , nk)) is an
upper bound for the number of isolated solutions of f(x) = 0.

5



Example 2.4 Polynomial systems occur frequently in mechanisms design. To determine the hand position
and orientation of a PUMA robot (PUMA = Programmable Universal Machine for Assembly), one has to
solve the following polynomial system (from [84]):

f(x) =





x2
1 + x2

2 − 1 = 0
x2

3 + x2
4 − 1 = 0

x2
5 + x2

6 − 1 = 0
x2

7 + x2
8 − 1 = 0

0.004731x1x3 − 0.3578x2x3 − 0.1238x1 − 0.001637x2 − 0.9338x4 + x7 − 0.3571 = 0
0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − 0.07745x2 − 0.6734x4 − 0.6022 = 0
x6x8 + 0.3578x1 + 0.004731x2 = 0
−0.7623x1 + 0.2238x2 + 0.3461 = 0

(8)

The total degree (product of the degrees of the polynomials in the system) equals 128. Partitioning x into
((x1x2), (x3x4x7x8), (x5x6)) leads to the degree matrix and permanent

A =




2 0 0
0 2 0
0 0 2
0 2 0
1 1 0
1 1 0
1 1 1
1 0 0




per(A, (2, 4, 2)) = 21,1 × 18,1

×22,2 × 24,2 × 15,2 × 16,2

×24,3 × 17,3

= 16.

(9)

The double subscripts in the products above refer to the coordinates of the entries in the degree matrix.
Notice that the product is the only possible nonzero choice of exactly one element of each row, choosing
exactly 2, 4, and 2 elements of columns 1, 2, and 3 respectively. The permanent per(A, (2, 4, 2)) is a 3-
homogeneous Bézout number which drastically improves the total degree. For the choices of the coefficients
in (8), there are exactly 16 solutions. ¦

Exercise 2.4 Use phc -r to verify the calculation done in Example 2.4. Finding a good partition is very
hard, fortunately, even for n = 8, enumerating all partitions of x goes fast. Let phc -r enumerate all
partitions of x in this case and check how fast this goes. Also try the heuristic methods for finding a
partition. ¦

Definition 2.5 The system g(x) = 0, g = (g1, g2, . . . , gn), is a linear-product start system if for all
i = 1, 2, . . . , n: gi(x) is the product of linear equations with randomly chosen coefficients.

Algorithm 2.5 solve a linear-product start system

Input: g(x) = 0, gi is a product of linear equations.
Output: all solutions of g(x) = 0.
Implementation: phc -r.

Example 2.5 For the system of Example 2.4, the random linear-product start system corresponding to

6



the degree matrix is g(x) =





(
c
(1)
10 + c

(1)
11 x1 + c

(1)
12 x2

)(
c
(2)
10 + c

(2)
11 x1 + c

(2)
12 x2

)
= 0

(
c
(1)
20 + c

(1)
21 x3 + c

(1)
22 x4 + c

(1)
23 x7 + c

(1)
24 x8

)(
c
(2)
20 + c

(2)
21 x3 + c

(2)
22 x4 + c

(2)
23 x7 + c

(2)
24 x8

)
= 0

(
c
(1)
30 + c

(1)
31 x5 + c

(1)
32 x6

)(
c
(2)
30 + c

(2)
31 x5 + c

(2)
32 x6

)
= 0

(
c
(1)
40 + c

(1)
41 x3 + c

(1)
42 x4 + c

(1)
43 x7 + c

(1)
44 x8

)(
c
(2)
40 + c

(2)
41 x3 + c

(2)
42 x4 + c

(2)
43 x7 + c

(2)
44 x8

)
= 0

(
c
(1)
50 + c

(1)
51 x1 + c

(1)
52 x2

)(
c
(2)
50 + c

(2)
51 x3 + c

(2)
52 x4 + c

(2)
53 x5 + c

(2)
54 x6

)(
c
(3)
50 + c

(3)
51 x7 + c

(3)
52 x8

)
= 0

(
c
(1)
60 + c

(1)
61 x1 + c

(1)
62 x2

)(
c
(2)
60 + c

(2)
61 x3 + c

(2)
62 x4 + c

(2)
63 x5 + c

(2)
64 x6

)
= 0

(
c
(1)
70 + c

(1)
71 x1 + c

(1)
72 x2

)(
c
(2)
70 + c

(2)
71 x3 + c

(2)
72 x4 + c

(2)
73 x5 + c

(2)
74 x6

)(
c
(3)
70 + c

(3)
71 x7 + c

(3)
72 x8

)
= 0

c
(1)
80 + c

(1)
81 x1 + c

(1)
82 x2 = 0

(10)

The coefficients of the equations are complex numbers, chosen at random. Observe that the algorithm to
solve g(x) = 0 makes the same moves as the algorithm to compute the permanent of the degree matrix. ¦

Theorem 2.5 (linear-product root count) If all coefficients of g(x) = 0 are chosen at random, then
all solutions of g(x) = 0 are isolated and regular. Moreover, the number of isolated solutions of g(x) = 0
bounds the number of isolated solutions of any system f(x) = 0 with the same degree structure as g.

Exercise 2.5 Use phc -r to construct a linear-product start system for the system (8) of Example 2.4.
Verify that the constructed start system (10 has indeed 16 regular isolated solutions and use phc -p to
solve the system (8). Alternatively, and less tediously, one could solve the system with the black-box
option phc -b and study the output file. ¦

Definition 2.6 For a system f(x) = 0, a linear-product structure is an array S of n arrays, S =
(S1, S2, . . . , Sn). The jth array of Si is a list of variables which will occur with nonzero coefficient in
the corresponding linear-product start system g(x) = 0, g = (g1, g2, . . . , gn). Formally, we have

gi(x) =

deg(gi)∏

j=1


ci,j,0 +

∑

x∈Sij

ci,j,kx


 , ci,j,k ∈ C, (11)

where the coefficients ci,j,k are chosen at random. We say that S is a supporting linear-product structure
for the system f(x) = 0 if every monomial in the system f also occurs in the system g.

Example 2.6 A neural network modeled by an adaptive Lotka-Volterra system gives rise to the following
system:

f(x1, x2, x3) =





x1x
2
2 + x1x

2
3 − λx1 + 1 = 0

x2x
2
1 + x2x

2
3 − λx2 + 1 = 0

x3x
2
1 + x3x

2
2 − λx3 + 1 = 0

(x1) (x2 x3) (x2 x3)
(x2) (x1 x3) (x1 x3)
(x3) (x1 x2) (x1 x2)

(12)

where for the parameter λ we can pick any value, say 3.14. The structure at the right of the system
generalizes multi-homogenization, and leads to the generalized Bézout number 21. While 21 may not be

7



such a significant savings compared to 27, the main advantage is that one can restrict the choice of the
random coefficients of the linear-product start system so it shares the same full permutation symmetry as
the target system. In particular, any permutation of the variables leaves the solution set invariant. As
start and target system share the same symmetry, so do all paths defined by the homotopy. Solutions
which can be transformed into each other by permuting the variables belong to the same orbit. It suffices
to compute only one generator per orbit. For this system it suffices to trace only the 8 generating solution
paths. ¦

Algorithm 2.6 extract a linear-product structure

Input: f(x) = 0, a polynomial system.
Output: g(x) = 0, a linear-product start system.
Implementation: phc -r.

Theorem 2.6 (linear-product start system) For a system f(x) = 0 and random linear-product start
system g(x) = 0 with the same degree structure as f , consider homotopy h(x, t) = γ(1−t)g(x)+tf(x) = 0,
with the constant γ chosen at random. All isolated solutions of f(x) = 0 lie at the end of some solution
path defined by h(x, t) = 0, starting at the solutions of g(x) = 0. In particular, a solution of f(x) = 0 of
multiplicity m is reached by exactly m solution paths.

Exercise 2.6 Verify by hand and/or with the help of phc -r that the linear-product start system re-
specting the same full permutation symmetry as the system (12) has indeed eight generating solutions. ¦

Bibliographic Notes. A nice introduction to solving polynomial systems by homotopies can be found
in [69]. The earliest applications of homotopies for solving polynomial systems ([16], [26], [40], [39], [68],
[72] [87], [145], [147]) belong to the dense class, where the number of paths equals the product of the degrees
in the system. Multihomogeneous homotopies were introduced in [86, 85] and applied in [139, 140], see
also [138]. Similar are the random product homotopies [73, 74], see also [77]. General linear-product start
systems started to appear in [135], and were extended in [131, 132], [76], and [144]. A general approach to
exploit product structures was developed in [93].

2.3 Newton Polytopes model Sparse Structures

A system is sparse when only few monomials occur with nonzero coefficients. An interesting class of sparse
systems have exactly two terms in every equation, we call such systems “binomial”. The Cayley trick
implements Minkowski’s theorem which defines mixed volumes. Via polyhedral homotopies we provide a
constructive proof for Bernshtein’s theorem. We end this section listing the conditions under which the
mixed volume fails to give a sharp root count.

Definition 2.7 Denote C∗ = C\{0}. An matrix A with integer coefficients and a vector c ∈ (C∗)n define
a binomial system, denoted as xA = c. The columns of A define the exponent vectors of the equations in
the binomial system, i.e.: for A = [a1a2 · · · an], we have

xA = x[a1 a2 ··· an] = [xa1 xa2 · · · xan ] and xA = c⇔ [xa1 = c1 x
a2 = c2 · · · xan = cn]. (13)

Algorithm 2.7 solve a binomial system

Input: A and c define xA = c, a binomial system.
Output: all solutions in (C∗)n to xA = c.
Implementation: phc -b.

8



Example 2.7 Consider the following binomial system:

{
x3

1x
2
2 = 1

x5
1x

1
2 = 1

⇔ xA = c : [x1 x2]

��
3 5
2 1

��
= [1 1]. (14)

To make A upper triangular, we define a unimodular matrix M taking the greatest common divisor of 3
and 2: gcd(3, 2) = 1 = (+1) · 3 + (−1) · 2. To eliminate the 2 in A, the second row in M will contain the
coefficients of the linear combination of 3 and 2: (+2) · 3 + (−3) · 2 = 0. So we have

M =

[
1 −1
−2 3

]
, det(M) = 1 MA =

[
1 −1

−2 3

] [
3 5
2 1

]
=

[
1 4
0 −7

]
= U. (15)

The unimodular transformation M defines a change of coordinates:

yM = x⇒ xA = yMA = yU . (16)

More explicitly, the coordinate transformation is

[x1 x2] = [y1 y2]

��
1 −1
−2 3

��
= [x1 = y1y

−2
2 x2 = y−1

1 y3
2 ]. (17)

When doing the coordinate transformation on the system, we recognize the matrix multiplication MA:





x3
1x

2
2 =

(
y1y

−2
2

)3 (
y−1
1 y3

2

)2
= y

1·3+(−2)·3
1 y

(−2)·3+3·2
2 = y1

x5
1x

1
2 =

(
y1y

−2
2

)5 (
y−1
1 y3

2

)1
= y

1·5+(−1)·1
1 y−2·5+3·1

2 = y4
1y

−7
2 .

(18)

The change of coordinates has not altered the number of solutions, which equals

| det(U)| = | det(MA)| = | det(U) det(A)| = | det(A)| = 7. (19)

The upper triangular matrix U is the Hermite normal form of the matrix A. The unimodular transfor-
mations M are the discrete analogues to Givens rotations. Making the exponent matrix upper triangular
defines coordinate transformations to make the binomial system triangular. ¦

Theorem 2.7 (regularity of a binomial system) If det(A) 6= 0 and c 6= 0, then xA = c has exactly
as many as | det(A)| isolated regular solutions.

Exercise 2.7 Consider the binomial system xA = c with

A =




2 1 3
3 2 1
1 3 2


 and c = [1 1 1]. (20)

Solve this system with phc -b. How many solutions does this system have? Compare this number with
the lowest generalized Bézout bound, using phc -r. ¦

Definition 2.8 Consider the polynomial system f(x) = 0, f = (f1, f2, . . . , fn). For i = 1, 2, . . . , n, the
support Ai of fi collects the exponents of x of those monomials which occur in fi with a nonzero coefficient,

so we can write fi(x) =
∑

a∈Ai

cax
a. The Newton polytope Pi of fi is the convex hull of the support Ai

of fi. We denote Pi = conv(A). We model the sparsity of the system f(x) = 0 by its tuple of supports

9



A = (A1, A2, . . . , An) and its tuple of Newton polytopes P = (P1, P2, . . . , Pn). Denote by ei the ith unit
vector. The Cayley embedding κ(A) of a tuple A adds n− 1 coordinates to every point in A as follows:

κ(A) = { (a,0) | a ∈ A1 } ∪
n⋃

i=2

{ (a, ei−1) | a ∈ Ai } . (21)

The Cayley polytope is the convex hull of κ(A).

Algorithm 2.8 the Cayley embedding
Input: A = (A1, A2, . . . , Ar), a tuple of supports.
Output: κ(A) is an (r − 1)-simplex with vertices Ai.
Implementation: phc -m.

Theorem 2.8 (Minkowski’s theorem) Given an n-tuple of polytopes (P1, P2, . . . , Pn), the volume of a
general linear combination of these polytopes, denoted by V (λ1P1 + λP2 + · · ·+ λnPn), is a homogeneous
polynomial of degree n in the coefficients λ1, λ2, . . ., λn. The coefficient of λ1λ2 · · ·λn in this polynomial
is the mixed volume V (P1, P2, . . . , Pn) of the n-tuple.

Example 2.8 Consider the following system:

f = (f1, f2)

=

{
x3

1x2 + x1x
2
2 + 1 = 0

x4
1 + x1x2 + 1 = 0

A = (A1, A2)
A1 = {(3, 1), (1, 2), (0, 0)}
A2 = {(4, 0), (1, 1), (0, 0)}

(22)

The Newton polytopes of the system are spanned by the tuple A = (A1, A2), where A1 and A2 are the
supports of f1 and f2 respectively. A cross section of a subdivision of the Cayley polytope is shown in
in Figure 1. In this cross section we see a mixed subdivision, for the convex combination λ1P1 + λ2P2,
λ1 +λ2 = 1, λ1 ≥ 0 and λ2 ≥ 0, where P1 defines the base and P2 is at the top of the polytope. The areas
of the triangles in the cross section are λ2

1 × area(P1) and λ2
2 × area(P2), as each side of the triangle is

scaled by λ1 and λ2 respectively. The area of the cell in the subdivision spanned by one edge of P1 (scaled
by λ1) and the other edge of P2 (scaled by λ2) is scaled by λ1 × λ2, as we move the cross section.

(3,1,0) (1,2,0)

(0,0,0)

(4,0,1) (1,1,1)

(0,0,1)

(3,1,0)
(1,2,0)

(0,0,0)

Figure 1: A mixed subdivision induced by a triangulation of the Cayley polytope.

In Figure 2 we show the Minkowski sum of the two polygons P1 and P2, with their mixed subdivision
corresponding to the triangulation of the Cayley polytope. For this example, Minkowski’s theorem becomes

area(λ1P1 + λ2P2) = V (P1, P1)λ
2
1 + V (P1, P2)λ1λ2 + V (P2, P2)λ

2
2

= 5λ2
1 + 8λ1λ2 + 4λ2

2.
(23)

The coefficients in the polynomial (23) are mixed volumes (or areas in our example): V (P1, P1) and
V (P2, P2) are the respective areas of P1 and P2, while V (P1, P2) is the mixed area. Note that the area is
scaled so that the unit triangle has area one. ¦

10



s
(0,0)

s(1,2) s (3,1)qqqqqqq
qqq

q q q q q q q q q q q q q q
q q q q q q q q q qP1 s

(0,0)

s(1,1) s
(4,0)

¡¡
PPPPPP2 s

(0,0)+(0,0)

s(0,0)+(1,2)

s
(0,0)+(4,0)

s(1,2)+(4,0)

s(1,2)+(1,1)

s
(3,1)+(4,0)qqqqqqq

qqq
qqqqqqq

qqq
q q q q q q q q q q q q q q

q q q q q q q q q q¡¡
PPPPP

λ1λ2

λ2
2

λ2
1

Figure 2: A subdivision of the sum of two polygons P1 and P2. The sum is the convex hull of all sums
of the vertices of the polygons. The cells in the subdivision are labeled by the multipliers for the area of
λ1P1 + λ2P2.

Exercise 2.8 Consider the system (1). How many different mixed subdivisions of the supports for this
system can you find? ¦

Definition 2.9 For a finite point set A in n-space, we define the lifting function ω which assigns to every
point a ∈ A a weight ω(a). We denote the lifted point set by Â = ω(A) and accordingly its convex hull

by P̂ = conv(Â). A triangulation 4 of A is regular if for every cell C ∈ 4: Ĉ is a facet of the lower hull

of Â. Then every cell C has a unique inner normal v, vn+1 = 1. This inner normal v is the solution to a
system of linear equalities and inequalities:

{
〈â,v〉 = 〈b̂,v〉, ∀â, b̂ ∈ Ĉ

〈â,v〉 = 〈b̂,v〉, ∀â ∈ Ĉ, ∀b̂ ∈ Â \ Ĉ or ∀â ∈ Ĉ : 〈â,v〉 = min�

b∈
�

A
〈â,v〉. (24)

The cell Ĉ = ∂vÂ spans the simplex conv(Ĉ) = ∂vP̂ . The volume V (P ) of a polytope is computed as

V (P ) =
∑

C∈4

V (C). (25)

For a point set A, V (A) denotes V (conv(A)).

Algorithm 2.9 dynamic lifting

Input: A a finite set of points in n-space.

Output: Â a lifted set of points;
4 a regular triangulation of A;
V (A) the volume of conv(A).

Implementation: phc -m.

Example 2.9 The dynamic lifting algorithm considers incrementally the points in a support with respect
to a regular triangulation of the previously processed points. Points inside a simplex are lifted out, i.e.:
we can always find a heigh enough lifting value so it does not belong to the lower hull. Points not in
any simplex of the current triangulation are lifted sufficiently heigh as to preserve all simplices already
computed. The key operation is to compute a barycentric decomposition of a point with respect to a
simplex. We illustrate this by the simplex spanned by vertices c0 = (0, 0), c1 = (3, 2), and c2 = (2, 4).
Table 1 shows the three different situations which may occur. ¦

Theorem 2.9 (cost of placeable triangulations) The construction of a placeable triangulation 4 of
a point set A in n-space takes at least O((#4)n3 + (#A)n2), at most O((#4)n3 + (#A)(#4)n2), and
on average O((#4)n3 + (#A)(#4)n) arithmetical operations.

Exercise 2.9 Consider again the system (22) introduced in Example 2.8. Use phc -m, choose for dynamic
lifting, and compute the Minkowski polynomial for this example. ¦

11



point barycentric decomposition pivoting

x = (2, 3): x = + 1
8 c0 + 1

4 c1 + 5
8 c2 no new simplex

y = (5, 1): y = − 1
3 c0 + 9

4 c1 − 7
8 c2 [y, c1, c2][c0, c1,y]

z = (1, 5): z = + 1
8 c0 − 3

4 c1 + 13
8 c2 [c0, z, c2]

Table 1: Three possible updates of the simplex [c0, c1, c2] with one point, x, y, or z. Either we have no,
two, or one new simplex by interchanging the vertex with negative coefficient with the point.

Definition 2.10 For a tuple of supports A = (A1, A2, . . . , An) in n-space, a lifting function ω defines

lifted supports Â = (Â1, Â2, . . . , Ân). A regular mixed-cell configuration C consists of all cells C ∈ C for
which there is a unique inner normal v, vn+1 = 1, satisfying the following systems of linear equalities and
inequalities:

{
〈â,v〉 = 〈b̂,v〉, ∀â, b̂ ∈ Ĉi

〈â,v〉 = 〈b̂,v〉, ∀â ∈ Ĉi, ∀b̂ ∈ Âi \ Ĉi
or ∀â ∈ Ĉi : 〈â,v〉 = min�

b∈
�

Ai

〈â,v〉, i = 1, 2, . . . , n. (26)

Then the mixed volume V (P) of the corresponding tuple of Newton polytopes P is

V (P) =
∑

C∈C

V (C). (27)

For a tuple of supports A spanning the Newton polytopes P , V (A) denotes V (P).

Algorithm 2.10 lift and prune

Input: A a tuple of supports of f(x) = 0.

Output: Â, lifted supports;
C a regular mixed-cell configuration;
V (A), the mixed volume of A.

Implementation: phc -m.

Example 2.10 Take the supports A from the system (22) in Example 2.8 and assign an integer lifting to

the points in A to obtain Â:

Â = (Â1, Â2), Â1 = {(3, 1, 1), (1, 2, 1), (0, 0, 0)}, Â2 = {(4, 0, 0), (1, 1, 1), (0, 0, 1)}. (28)

As the Newton polytopes each have three edges, there are 9 edge-edge combinations to try. An edge-edge
combination leads to a mixed cell if there exists an inner normal v 6= 0 which satisfies the conditions
in (26). Two of the nine combinations lead to mixed cells:

Ĉ(1) = (Ĉ1, Ĉ2)

Ĉ1 = {(1, 2, 1), (0, 0, 0)}
Ĉ2 = {(4, 0, 0), (1, 1, 1)}

v = (1,−4, 7), V (C(1)) = 7

Ĉ(2) = (Ĉ1, Ĉ2)

Ĉ1 = {(1, 2, 1), (0, 0, 0)}
Ĉ2 = {(1, 1, 1), (0, 0, 1)}

v = (1,−1, 1), V (C(2)) = 1

(29)

Adding the volumes of mixed cells, we arrive at eight, which is the mixed volume of the tuple of Newton
polytopes spanned by the supports. The cells Ĉ(1) and Ĉ(2) constitute a regular mixed-cell configuration
for A. Observe that both cells share the same edge and belong to the same branch of the tree of all
edge-edge combinations. Early pruning in this tree using linear programming on the conditions (26) is
very important for an efficient mixed-volume computation. ¦

12



Theorem 2.10 (mixed-cell configuration) For any random lifting function ω on the supports A, all
cells C in the mixed-cell configuration C induced by ω are fine mixed, i.e., for C = (C1, C2, . . . , Cn):
#Ci = 2, i = 1, 2, . . . , n. Moreover, the mixed volume is invariant under lifting.

Exercise 2.10 Consider the cyclic 7-roots problem (see [7] and [10]):

f(z) =





z0 + z1 + z2 + z3 + z4 + z5 + z6 = 0
z0z1 + z1z2 + z2z3 + z3z4 + z4z5 + z5z6 + z6z0 = 0

z0z1z2 + z1z2z3 + z2z3z4 + z3z4z5 + z4z5z6 + z5z6z0 + z6z0z1 = 0
z0z1z2z3 + z1z2z3z4 + z2z3z4z5 + z3z4z5z6 + z4z5z6z0 + z5z6z0z1 + z6z0z1z2 = 0

z0z1z2z3z4 + z1z2z3z4z5 + z2z3z4z5z6 + z3z4z5z6z0 + z4z5z6z0z1
+z5z6z0z1z2 + z6z0z1z2z3 = 0

z0z1z2z3z4z5 + z1z2z3z4z5z6 + z2z3z4z5z6z0 + z3z4z5z6z0z1 + z4z5z6z0z1z2
+z5z6z0z1z2z3 + z6z0z1z2z3z4 = 0

z0z1z2z3z4z5z6 − 1 = 0

(30)

Use phc -m to compute a regular mixed-cell configuration. Compare the performance of dynamic lifting
against a static lifting, with random lifting values. ¦

Definition 2.11 Let A = (A1, A2, . . . , An) be a typle of supports. The ith polynomial gi(x) of a random
coefficient start system g(x) = 0 has support Ai and random complex coefficients. A random coefficient
start system combined with a lifting function ω on the supportsA defines a polyhedral homotopy ĝ(x, t) = 0,
as follows:

if gi(x) =
∑

a∈Ai

cax
a then ĝi(x, t) =

∑

a∈Ai

cax
atω(a). (31)

The lifting function ω induces a regular mixed-cell configuration C, whose cells are characterized by inner
normals v: Ĉ = ∂vÂ. The cells define the start systems ∂vg(x) = 0 in the polyhedral homotopy:

∂vgi(x) =
∑

a∈Ci

cax
a, C = (C1, C2, . . . , Cn) ∈ C. (32)

The inner normals define a polyhedral coordinate change necessary to start the deformation process:

for i = 1, 2, . . . , n : xi = yis
vi , t = s. (33)

After executing the coordinate change on the polyhedral homotopy we obtain the homotopy

ĝi(y, s) =
∑

a∈Ai

cay
as〈(a,ω(a)),v〉 =

∑

a∈Ci

cay
asm +

∑

a∈Ai\Ci

cay
as〈(a,ω(a)),v〉 = 0, m = min

a∈Ai

〈â,v〉. (34)

We see (after clearing sm): ĝi(y, s = 0) = ∂vgi(y). So for every inner normal v, there is one homotopy
which defines V (C) solution paths.

Example 2.11 The lifting of the supports of the system (22) (first introduced in Example 2.8) defines not
only a regular mixed-cell configuration (see Example 2.10), but also a set of so-called polyhedral homo-
topies. For every mixed cell, there is one homotopy. We start by introducing a continuation parameter t
whose exponent is defined by the lifting:

ĝ = (ĝ1, ĝ2)

=

{
c
(1)
31 x

3
1x2t

1 + c
(1)
12 x1x

2
2t

1 + c
(1)
00 t

0 = 0

c
(2)
40 x

4
1t

0 + c
(2)
11 x1x2t

1 + c
(2)
00 t

1 = 0

Â = (Â1, Â2)

Â1 = {(3, 1, 1), (1, 2, 1), (0, 0, 0)}
Â2 = {(4, 0, 0), (1, 1, 1), (0, 0, 1)}

(35)

13



Notice the introduction of the random coefficients c
(k)
ij ∈ C. The system ĝ(x, t = 1) = 0 is a random

coefficient start system to solve any system f(x) = 0 with supports A. To solve ĝ(x, t = 1) = 0, we change

coordinates, using the inner normals to the mixed cells. The first mixed cell Ĉ(1) of (29) of Example 2.10
has inner normal v = (1,−4, 7). The coordinate change x1 = y1s

1, x2 = y2s
−4, t = s7 on ĝ(x, t) = 0

produces the homotopy ĝ(y, s) = 0:
{

c
(1)
31 y

3
1y2s

3·1+1·(−4)+1·7 + c
(1)
12 y1y

2
2s

1·1+2·(−4)+1·7 + c
(1)
00 s

0·7 = c
(1)
31 y

3
1y2s

6 + c
(1)
12 y1y

2
2 + c

(1)
00 = 0

c
(2)
40 y

4
1s

4·1+0·(−4)+0·7 + c
(2)
11 y1y2s

1·1+1·(−4)+1·7 + c
(2)
00 s

1·7 =
(
c
(2)
40 y

4
1 + c

(2)
11 y1y2 + c

(2)
00 s

3
)
s4 = 0

(36)

After clearing the s4 from the second equation, we observe that the exponent vector of those terms which
occur with s0 belong to the support of the mixed cell Ĉ(1). At s = 0, the continuation starts at the seven
solutions of the binomial system with supports C(1). The construction is similar for the second cell Ĉ(2). ¦

Algorithm 2.11 solve a random coefficient system
Input: g(x) = 0, a system with random coefficients;

Â, lifted supports of g;
C a regular mixed-cell configuration.

Output: all solutions in (C∗)n to g(x) = 0.
Implementation: phc -m.

Theorem 2.11 (Bernshtěın’s first theorem) A generic system g(x) = 0 has exactly as many isolated
solutions in (C∗)n as the mixed volume of its Newton polytopes.

Exercise 2.11 Consider again the cyclic 7-roots problem (30). Use the regular mixed-cell configuration
computed in Exercise 2.10 to create a random coefficient start system. With this start system, solve the
system. Verify the results by running phc -b on this system. ¦

Definition 2.12 Let A = (A1, A2, . . . , An) be the supports of the polynomials in f = (f1, f2, . . . , fn).
Any nonzero vector v defines the face system

∂vf = (∂vf1, ∂vf2, . . . , ∂vfn) with ∂vfi =
∑

a∈∂vAi

cax
a. (37)

whose supports ∂vA = (∂vA1, ∂vA2, . . . , ∂vAn) span faces of the corresponding Newton polytopes.

The following example illustrates the notion of Newton polytopes being in general position.

Example 2.12 Consider the following polynomial system:

f(x) =

{
c111x1x2 + c110x1 + c101x2 + c100 = 0

c222x
2
1x

2
2 + c210x1 + c201x2 = 0

(38)

where the coefficients cijk are nonzero complex numbers. Figure 3 shows the two Newton polygons of the
polynomials in the system (38).

As the face systems can have no solution with all components different from zero, the system must
have exactly as many isolated solutions as the mixed volume, and this for any nonzero choice of the
coefficients. ¦

Algorithm 2.12 polyhedral end game
Input: h(x, t) = 0, a homotopy;

xt, solution for t ≈ 1.
Output: either x1 is a regular solution of h(x, t) = 0,

or x1 is a solution of a face system ∂vh(x, t) = 0.
Implementation: phc -p.

14



t tt tP1

t¢¢
¢
¢t

@
@

t
©©

©©
P2

Figure 3: The Newton polygons of the system (38). Observe that for any inner normal v 6= 0: ∂ωA1 +
∂ωA2 ≤ 3. This means that all face systems have no solutions in (C \ {0})2.

Theorem 2.12 (Bernshtěın’s second theorem) If ∀v 6= 0, ∂vf(x) = 0 has no solutions in (C∗)n,
then V (A) is exact and all solutions are isolated. Otherwise, for V (A) 6= 0: V (A) > #isolated solutions.

Exercise 2.12 Consider the system (5), introduced in Example 2.3. Take a = 0 and show that the
Newton polytopes of this system are not in general position. (Hint: for a = 0, all monomials in the system
have the same degree). ¦

Bibliographic Notes. Recommended introductions to polyhedral methods to solve polynomial systems
are [20], [126], and [127]. See [41] for the relation with discriminants and resultants. A survey on toric
resultants is in [27]. For a nice introduction to polytopes, see [146]. For an overview on efficient techniques
to compute mixed volumes, see [70]. Implementing constructive proofs of Bernshtěın’s theorems [9], poly-
hedral homotopies were introduced in [52] and [136] to solve sparse systems more efficiently. The mixed
volume was nicknamed the BKK bound in [13] to honor Bernshtěın [9], Kushnirenko [62], and Khovan-
skǐı [58]. The polyhedral version of the Cayley trick is due to Bernd Sturmfels, see [123] and [41]. Another
application of this trick is in [51]. Mixed subdivisions were introduced in [124, 125] to generalize Viro’s
method [55, 56] to complete intersections. The lift-and-prune approach was presented in [28]. Exploitation
of symmetry was studied in [133] and the dynamic lifting of [134] led to incremental polyhedral continu-
ation. See [130] for a Toric Newton, as a sequel to polyhedral endgames [54], implementing Bernshtěın’s
second theorem. Extensions to count all affine roots (also those with zero components) were proposed
in [30], [37], [53], [81], [100, 101], and [102]. Very efficient calculations of mixed volumes are described
in [21], [34, 35, 38], [71], and [128]. The stability of numerical continuation methods for polyhedral methods
is addressed in [36] and [59].

2.4 Isolated Singularities computed by Deflation

The convergence of Newton’s method slows down to a halt when approaching a singular solution. In this
section we show how to restore the quadratic convergence by deflation, which is an effective reconditioner,
allowing the accurate computation of isolated singularities. After we have located the isolated singularity
accurately, we can compute its multiplicity, as the number of elements in a basis for the dual space.

Definition 2.13 Let R be the rank of an isolated singular root x∗ of a system f(x) = 0 of N equations
in n unknowns. We define a deflation of f at x∗ as the system

F (x,λ) =





f(x) = 0
∂f
∂xBλ = 0

hλ = 1
(39)

using R+1 multipliers λ = (λ1, λ2, . . . , λR+1) as extra variables, together with an N -by-(R+1) matrix B
of random complex numbers and a random vector of R+ 1 complex coefficients h.

15



Example 2.13 Consider the following simple example

f(x, y) =





x2 = 0
xy = 0
y2 = 0

A(x, y) =




2x 0
y x

0 2y


 x∗ = (0, 0),m = 3

Rank(A(x∗)) = 0
(40)

In Example 2.14 we will show that x∗ occurs with multiplicity m = 3. Since the rank is zero, we right
multiply A(x) with a random 2-by-1 matrix B = [b11 b21]

T and introduce one multiplier λ1, so we obtain:

Dfl(f)(x,y, λ1) =





f(x, y) = 0


2x 0
y x

0 2y



[
b11
b21

]
λ1 =




0
0
0




h1λ1 = 1, random h1 ∈ C

(41)

For a certain value λ∗1 of the multiplier λ1, Dfl(f)(x,y, λ1) = 0 has (0, 0, λ∗1) as regular zero. ¦

Algorithm 2.13 Newton with deflation

Input: f(x) = 0, a polynomial system;
x0 is an initial guess for the solution.

Output: F (x,λ) = 0, a deflated system,
(x∗,λ∗) is a regular solution of F (x,λ) = 0.

Implementation: phc -v.

Theorem 2.13 (#deflations to restore quadratic convergence) The number of deflations needed
to restore the quadratic convergence of Newton’s method converging to an isolated solution is strictly less
than the multiplicity of the isolated solution.

Exercise 2.13 Consider again the system (1) first introduced in Example 2.1. Apply the deflation algo-
rithm (using phc -v) to the solutions found at the end of the solution paths. ¦

Once we have accurately located the isolated singularity, we can compute its multiplicity. For this, we
need to look at the dual space of differential operators.

Definition 2.14 We abbreviate the differential operator ∂a1+a2+...+an

∂x
a1
1 ∂x

a2
2 ···∂xan

n
by ∂a, with a = (a1, a2, . . . , an).

Denote |a| = a1 + a2 + · · ·+ an. For any z, we define the linear operator ∂a[z] as

∂a[z] : C[x]→ C : p 7→ 1

a1!a2! · · ·an!

(
∂|a|p

∂xa1

1 ∂xa2

2 · · ·∂xan
n

)
(z). (42)

For a system f(x) = 0 and root x∗, consider the sequence of multiplicity matrices Sk, where the columns
of Sk are indexed by ∂a, for |a| ≤ k, and the rows by xbfi, for |b| ≤ k−1. The entries of Sk are the values
of ∂a(x

bfi), evaluated at x∗. By convention, S0 = f(x∗).

Algorithm 2.14 dual space and multiplicity

Input: f(x) = 0, a polynomial system;
x∗ is a solution to f(x) = 0.

Output: differential operators which span the dual space D[x∗],
m = dim(D[x∗]) is the multiplicity of the solution x∗.

Implementation: phc -v.

16



Theorem 2.14 (the Hilbert function) The Hilbert function H(k) and multiplicity m are

H(k) = nullity(Sk)− nullity(Sk−1), k = 1, 2, . . . m =
∞∑

k=1

H(k). (43)

Example 2.14 Consider again the system (40) introduced in Example 2.13. The multiplicity of x∗ = (0, 0)
is 3 because the dual space D[x∗] = span{∂00[x

∗], ∂10[x
∗], ∂01[x

∗]} is spanned by three elements. The
calculation of the basis for D[x∗] is illustrated below. The algorithm stops when Nullity(S1) = Nullity(S2):

|a|=0︷︸︸︷
∂00

|a|=1︷ ︸︸ ︷
∂10 ∂01

|a|=2︷ ︸︸ ︷
∂20 ∂11 ∂02

f1
f2
f3S1

xf1
xf2
xf3
yf1
yf2
yf3S2

0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

For this simple example, we can take the natural basis ∂00, ∂10, and ∂01 for the null space of S1. We also
immediately see that the dimension of the null space of S2 is the same as the nullity of S2. ¦

Exercise 2.14 Compute the multiplicity of the roots of the system (1), after the deflation has recondi-
tioned the singular roots in Exercise 2.13. ¦

Bibliographic Notes. In numerical analysis, Newton’s method in the presence of singularities has been
studied widely. A classic book is [99]. Research up to the mid eighties is surveyed in [48]. The book [45]
describes various techniques in the context of path following methods. These techniques are know as
Liapunov-Schmidt reduction [1],[5], see also [79, 80], [24], [60, 61]. To deal with singular solutions at the
end of solution paths defined by polynomial homotopies, so-called endgames were developed in [90, 91, 92]
and [120]. Newton’s method for overdetermined systems was studied in [23]. Computer algebra uses
the notion of standard bases, see [82] and its generalization in [46], as implemented in Singular [47]. In
numerical polynomial algebra [121], one uses duality, see [94] and algorithms to compute the multiplicity are
given in [122] and [22]. Algorithm 2.14 is based on [22], which uses duality in its analysis of Algorithm 2.13,
the deflation algorithm of [67]. The deflation is inspired on [98], see also [95], [96], and [97] A symbolic
deflation algorithm is in [63].

3 Lecture II: Numerical Irreducible Decomposition

The goal of the second lecture is to identify the main algorithms needed to compute a numerical irreducible
decomposition.

There are four parts in this lecture. We first define numerical representations of pure dimensional
solutions sets, what we call “witness sets”. With a cascade of homotopies we compute witness supersets
for all solutions of all dimensions. After filtering points on higher dimensional solution sets from the
witness supersets we obtain witness sets for all pure dimensional solution sets of a polynomial system.
In the third section we describe factorization methods to decompose pure dimensional solution sets into
irreducible components. We end this lecture by introducing diagonal homotopies to intersect witness sets.
Diagonal homotopies give rise to an equation-by-equation solver, which can be used as a blackbox solver.

17



3.1 Witness Sets represent Pure Dimensional Solution Sets

Adding extra equations or extra variables we can reduce the case of an unequal number of equations and
unknowns to the square case.

Definition 3.1 For a positive natural number k and a polynomial system f(x) = 0 of N equations in n

unknowns, an embedding of f with k hyperplanes is for N = n:

Ek(f)(x, z) =
{

f(x) +Bz = 0
Cx+ d+ z = 0

z = (z1, z2, . . . , zk),
B ∈ CN×k, C ∈ Ck×n,d ∈ Ck×1,

(44)

where B, C, and d are random complex matrices, z contains k slack variables. When N > n, we need
r = N − n more slack variables z− and extend the embedding as follows:

Ek(f)(x, z) =





f(x) + [B− B]

[
z−
z

]
= 0

Cx+ d+ z = 0

z− = (z−r+1, . . . , z−1, z0), z = (z1, z2, . . . , zk),
B− ∈ CN×r, B ∈ CN×k, C ∈ Ck×n,d ∈ Ck×1.

(45)

Only solutions with z− = 0 are relevant. When N < n, we can set the first s = n−N of the slack variables
to zero so the embedding then becomes

Ek(f)(x, z) =





f(x) +Bz0 = 0
z0 = 0

Cx+ d+ z = 0

z0 = (z1, z2, . . . , zs), z = (z1, z2, . . . , zk)
B ∈ CN×k, C ∈ Ck×n,d ∈ Ck×1.

(46)

Observe that for all N and n, the index of the last slack variable always equals k, which is the dimension
of the relevant solution set.

Example 3.1 Let f be a system of N equations in n variables. For (N,n) = (2, 2) and k = 1, we use the
following embedding: 




f1(x1, x2) + b11z1 = 0
f2(x1, x2) + b21z1 = 0

c0 + c1x1 + c2x2 + z1 = 0
(47)

where the coefficients b11, b21, c0, c1, and c2 are random complex numbers. For (N,n) = (3, 2), and
(N,n) = (2, 3), we have the following respective embeddings for k = 1:





f1(x1, x2) + b10z0 + b11z1 = 0
f2(x1, x2) + b20z0 + b21z1 = 0
f3(x1, x2) + b30z0 + b31z1 = 0

c0 + c1x1 + c2x2 + z1 = 0





f1(x1, x2, x3) + b11z1 = 0
f2(x1, x2, x3) + b21z1 = 0

z1 = 0
c0 + c1x1 + c2x2 + c3x3 + z1 = 0

(48)

In all three cases, the embedded system has as many equations as unknowns. Only solutions with zero
slack variables belong to the one dimensional solution set. ¦

Algorithm 3.1 embed a polynomial system

Input: f(x) = 0, a polynomial system;
k > 0, a positive number.

Output: Ek(f)(x, z) = 0, z = (z1, z2, . . . , zk) are slack variables,
the last k equations in Ek(f) are linear.

Implementation: phc -c.

Theorem 3.1 (Bertini’s theorem) Suppose f(x) = 0 defines only one k-dimensional solution set Z.
Then

deg(Z) = #{ (x, z) ∈ Cn+k | Ek(f)(x, z) = 0 and z = 0 }. (49)

18



Exercise 3.1 The equations defining the adjacent 2-by-2-minors (coming from [25], see also [49]) of a
general 2-by-4-matrix are





x11x22 − x21x12 = 0
x12x23 − x22x13 = 0
x13x24 − x23x14 = 0

for the matrix

[
x11 x12 x13 x14

x21 x22 x23 x24

]
. (50)

With 3 polynomials in 8 variables, we may expect a solution set of dimension five. Use phc -c to construct
an embedding for this system. Solve the embedded system (with phc -b) and verify that the system has
indeed a five dimensional solution set. What is the degree of this solution set? ¦

Definition 3.2 A witness point is a solution of a polynomial system which lies on a set of generic hy-
perplanes. The number of generic hyperplanes used to isolate a point from a solution component equals
the dimension of the solution set. The number of witness points on one component cut out by the same
set of generic hyperplanes equals the degree of the solution set. A witness set for a k-dimensional solution
set consists of k random hyperplanes and the set of isolated solutions comprising the intersection of the
component with those hyperplanes.

Algorithm 3.2 sampling a solution set

Input: WL is witness set for k hyperplanes L;
K is a new set of k hyperplanes.

Output: WK is witness set for hyperplanes K.
Implementation: phc -p.

Theorem 3.2 (numerical elimination) Suppose the system f(x,y) = 0, with x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yk) defines a k-dimensional solution set. Restricting the k hyperplanes in the embedding
Ek(f) to have only nonzero coefficients with the y-variables, we can eliminate y from the solution set and
via interpolation construct defining equations for the projection of the solution set onto the x-variables.

Example 3.2 The twisted cubic is a curve in three space defined by the intersection of a quadratic and
a cubic surface: y = x2 and z = x3 respectively. These two surfaces are the projections of the twisted
cubic on the respective (x, y) and (x, z)-planes. We can realize these projections by restricting the slicing
hyperplanes appropriately. Consider the following three systems:





y − x2 = 0
z − x3 = 0
c0 + c1x+ c2y + c3z = 0





y − x2 = 0
z − x3 = 0
c0 + c1x+ c2y = 0





y − x2 = 0
z − x3 = 0
c0 + c3z = 0

(51)

Substituting y by x2 and z by x3 in the last equation of the first system, we obtain a cubic in one single
variable x, defining three generic points on the twisted cubic. Similarly, for the second system, we find only
two solutions. Dropping the z from the samples, i.e. (x, y, z) 7→ (x, y), we sample from y−x2 = 0. The last
equation in the third system defines a plane parallel to the (x, y)-plane. Applying (x, y, z) 7→ (x, z) to the
sampled points executes the projection of the twisted cubic on z−x3 = 0. With multivariate interpolation
through the projected samples we eliminate in this way the variables z or y from the system. ¦

Exercise 3.2 The following polynomial system represents a spatial Burmester problems [12], used in body

19



guidance problems.

f(x1, x2, x3, y1, y2, y3) =��������������������������������������������������������� ��������������������������������������������������������

−1.10341193720649E + 00y1x1 − 5.86815682189835E − 01y1x2 − 7.92036085497022E − 01y1x3

−5.77733959201612E − 01y2x1 + 3.87368458550248E − 01y2x2 + 1.28043505098815E + 00y2x3

+1.04041310144849E + 00y3x1 + 1.07931536931741E − 01y3x2 − 3.40083678408469E − 01y3x3

−5.68456000000000E − 01y1 + 1.05510000000000E − 02y2 + 8.21000000000000E − 04y3

−1.95379855738832E − 01x1 − 1.94409521104426E − 01x2 − 1.04439406278041E + 00x3

+3.41541444787000E − 01 = 0
−1.27667983027595E + 00y1x1 − 8.22293023657284E − 01y1x2 + 9.85781640537901E − 01y1x3

+1.10445261409581E + 00y2x1 − 8.28754979219007E − 02y2x2 + 1.48463358281623E + 00y2x3

+4.94115593345597E − 01y3x1 + 2.03347173764983E − 01y3x2 − 4.33616705996826E − 02y3x3

+9.33643000000000E − 01y1 − 1.33829000000000E − 01y2 + 1.04241900000000E + 00y3

+2.63041345590506E − 01x1 − 1.03548264961166E + 00x2 − 7.93223555891750E − 01x3

+4.19707164888500E − 01 = 0
−8.83804023497621E − 01y1x1 − 1.78651736017982E − 01y1x2 − 7.38492559710131E − 01y1x3

+4.43434838274957E − 01y2x1 + 8.09639929536600E − 01y2x2 + 1.38546622633458E + 00y2x3

+1.56573040484672E + 00y3x1 − 8.99276927801036E − 01y3x2 − 4.05489960274242E − 01y3x3

+1.07621800000000E + 00y1 + 3.81121000000000E − 01y2 − 6.69739000000000E − 01y3

+7.52673504306374E − 01x1 − 1.28749695700861E + 00x2 + 1.47238424191569E − 01x3

+7.54400309061000E − 01 = 0
−1.24212145914842E + 00y1x1 − 1.23465051231272E + 00y1x2 − 4.85226728194913E − 01y1x3

−4.86814272583431E − 01y2x1 − 1.94381663901655E − 01y2x2 + 1.63104483875388E + 00y2x3

+1.11153625371862E − 01y3x1 + 6.84956479647339E − 03y3x2 − 6.08528904330562E − 01y3x3

+9.04135000000000E − 01y1 + 7.81815000000000E − 01y2 − 3.95866000000000E − 01y3

+5.18838101619745E − 01x1 + 5.93430553942240E − 01x2 − 6.26769769282934E − 01x3

+7.12048812833000E − 01 = 0
−6.46023972517329E − 01y1x1 − 1.29375652786430E + 00y1x2 − 5.84812917010785E − 01y1x3

+1.62705334082809E − 01y2x1 + 6.52017519795460E − 01y2x2 + 2.86172998155648E − 01y2x3

+1.58054783715492E + 00y3x1 − 6.31169332666938E − 01y3x2 − 1.85713987157407E − 01y3x3

−5.74712000000000E − 01y1 − 7.49368000000000E − 01y2 + 6.30445000000000E − 01y3

−4.55403271303103E − 01x1 − 5.80692051452173E − 01x2 − 1.21733476968808E + 00x3

+5.68373481377500E − 01 = 0

(52)

The equations in this polynomial system define a curve of degree twenty. Verify that the degree of the
projection onto the (x1, x2, x3) or (y1, y2, y3) coordinates equals ten. ¦

Definition 3.3 Given a polynomial system f(x) = 0, a witness set WL, and a point y ∈ Cn, we define
the membership homotopy as

h(x, t) = (1− t)

(
f(x) = 0
L(x) = 0

)
+ t

(
f(x) = 0

L(x) = L(y)

)
= 0. (53)

Solution paths start at t = 0 at the witness points in WL and end at t = 1 at the solutions of a new witness
set with hyperplanes passing through the point y.

Example 3.3 Figure 4 illustrates the homotopy membership test for a cubic component V of a curve f−1(0).
We see that the test point does not belong to the component V because it is not one of the three points
in the new witness set. As the given point p may be known only with very limited accuracy (it could be a
highly singular point), it is very important to note that the paths move from solutions at L(x) = 0 to the
hyperplane Lp(x) = 0 which passes through p. ¦

Algorithm 3.3 homotopy membership test

Input: WL is witness set for a solution set;
x0 is any point in space.

20



L

@
@
@
@
@
@
@
@
@

s s
s

V ⊂ f−1(0)

sp ∈ V ?

V is represented by a witness set V ∩ L.

Lp

@
@
@
@
@
@
@
@

s
s s

V ⊂ f−1(0)

sp 6∈ V

new witness set V ∩ Lp, p 6∈ V ∩ Lp

Figure 4: The homotopy membership test on a cubic component.

Output: yes or no, depending whether x0 belongs to the set.
Implementation: phc -f.

Theorem 3.3 (probability one membership criterium) Executing the membership homotopy on a
point for a given witness set determines with probability one if the point lies in the set or not.

Exercise 3.3 The following polynomial system

{
(y − x2)(y + z) = 0
(z − x3)(y − z) = 0

(54)

was used in [112] to illustrate the homotopy membership test. We see there are four irreducible factors.
First use phc -c to create an embedding, then with phc -b compute witness points for the one dimensional
solution set, followed by phc -f to have witness sets for the four irreducible factors. Choose four points,
one point on each irreducible component. Conduct the membership test using phc -f to verify whether
the chosen point indeed belongs to only one component and not on the other three components. ¦

Bibliographic Notes. The use of generic points was outline in the paper on numerical algebraic geome-
try [118] and plays a key role in the numerical irreducible decomposition [107]. The homotopy membership
test was proposed in [108], extension to deal with singular solution sets were described in [110]. See [113]
for applications tot mechanical design. Witness sets are equivalent to lifting fibers in a geometric resolu-
tion [42, 43, 44, 64]. See also [103] for a tutorial on the complexity of these algorithms.

3.2 A Cascade of Homotopies to Compute Witness Supersets

Definition 3.4 For an embedding Ei(f)(x, z) = 0 we define a cascading embedding Ei−1(f)(x, z) = 0 by
removing the last ith hyperplane from Ei(f). Then we can define a sequence of homotopies or a cascading
homotopy

hi(x, z, t) = (1− t)Ei(f)(x, z) + t

(
Ei−1(f)(x, z)

zi

)
= 0 (55)

which is a homotopy between cascading embeddings, removing the ith hyperplane in each stage. A witness
superset for an i-dimensional solution set (also called an i-dimensional witness superset) contains a witness
set and additional points on higher dimensional solution sets.

21



Example 3.4 The polynomial system

f(x) =





(x2
1 − x2)(x1 − 0.5) = 0

(x3
1 − x3)(x2 − 0.5) = 0

(x1x2 − x3)(x3 − 0.5) = 0
(56)

has a one dimensional solution set, i.e.: the twisted cubic, and four isolated points. To compute numerical
representations of the twisted cubic and the four isolated points, as given by the solution set of the
system (56), we use the following homotopy:

H(x, z1, t) =







(x2
1 − x2)(x1 − 0.5)

(x3
1 − x3)(x2 − 0.5)

(x1x2 − x3)(x3 − 0.5)


 + t




γ1

γ2

γ3


 z1

t (c0 + c1x1 + c2x2 + c3x3) + z1


 = 0 (57)

At t = 1: H(x, z1, t) = E1(f)(x, z1) = 0. At t = 0: H(x, z1, t) = f(x) = 0. As t goes from 1 to 0,
the hyperplane is removed from the embedded system, and z1 is forced to zero. Figure 5 summarizes the
number of solution paths traced in the cascade of homotopies.

13 paths - 0 paths to infinity

3 solutions with z1 = 0

10 solutions with z1 6= 0

- W1 witness set

?

10 paths - 1 path to infinity

9 converging paths - Ŵ0 witness superset

Figure 5: Summary of the #paths in the cascade on system (56), to compute a witness set for the twisted
cubic and approximations to the four isolated solutions.

The set Ŵ0 of Figure 5 contains, in addition to the four isolated roots, also points on the twisted cubic.
The points in Ŵ0 which lie on the twisted cubic are considered junk and must be filtered out, using the
homotopy membership test. ¦

Algorithm 3.4 cascade of homotopies

Input: Ek(f)(x, z) = 0, z = (z1, z2, . . . , zk);
all solutions with z 6= 0.

Output: [W0,W1, . . . ,Wk−1], Wi is an i-dimensional witness superset.
Implementation: phc -c.

Theorem 3.4 (superwitness set generation) For an embedding Ei(f)(x, z) of f(x) = 0 with i random
hyperplanes and i slack variables z = (z1, z2, . . . , zi), we have (1) solutions with z = 0 contain degW
generic points on every i-dimensional component W of f(x) = 0; (2) solutions with z 6= 0 are regular; and
(3) the solution paths defined by the cascading homotopy starting at t = 0 with all solutions with zi 6= 0
reach at t = 1 all isolated solutions of Ei−1(f)(x, z) = 0.

Exercise 3.4 A 7-bar mechanism (used in [107]) which permits motion gives rise to the following poly-

22



nomial system:

f(t,T) =



t1T1 − 1 = 0
t2T2 − 1 = 0
t3T3 − 1 = 0
t4T4 − 1 = 0
t5T5 − 1 = 0
t6T6 − 1 = 0
0.71035834160605t1+ 0.46t2 − 0.41t3 + 0.24076130055512+ 1.07248215701824i= 0
(−0.11 + 0.49i)t2 + 0.41t3 − 0.50219518117959t4 + 0.41t5 = 0
0.50219518117959t4+ (−0.09804347826087+ 0.43673913043478i)t5

−0.77551855666366t6− 1.2 = 0
0.71035834160605T1 + 0.46T2 − 0.41T3 + 0.24076130055512− 1.07248215701824i= 0
(−0.11− 0.49i)T2 + 0.41T3 − 0.50219518117959T4+ 0.41T5 = 0
0.50219518117959T4 + (−0.09804347826087− 0.43673913043478i)T5

−0.77551855666366T6− 1.2 = 0

(58)

where t = (t1, t2, . . . , t6) and T = (T1, T2, . . . , T6). The solutions to this system are a curve of degree six
and six isolated solutions. Use phc -c to construct E1(f) and call phc -c again to run the cascade. Check
the output to verify whether a witness set for the curve has six points and check the size of the witness
superset Ŵ0. Count how many paths have been tracked. ¦

Bibliographic Notes. The cascade of homotopies was presented in [105]. The complexity of finding all
dimensions and degrees of the solutions of a polynomial system was adressed in [42], see also [103]. The
cascade in [105] gave the first efficient numerical implementation for this problem.

3.3 Factoring Solution Sets into Irreducible Components

Definition 3.5 For a witness set WL representing a k-dimensional solution set of f(x) = 0, the linear
trace T is a linear function of the constant c in the kth hyperplane of L. In particular, the value of T (c)
is the sum of all second coordinates the solutions obtained at for the value c of the constant of the kth
hyperplane.

Algorithm 3.5 linear trace test

Input: WL, WL′ , WL′′ , witness sets on parallel slices;
a partition of the witness set.

Output: yes if every set in the partition is a factor, no otherwise.
Implementation: phc -f.

Theorem 3.5 (linear trace criterium) Consider three hyperplanes L, L′, and L′′, with respective con-
stants c0, c1, and c2. Linear Interpolation through (c0, T (c0)) and (c1, T (c1)) gives constants a and b in
the formula T (c) = a+ bc. If T (c2) corresponds to the actual value of the linear trace at c2, then the points
used in the linear interpolation represent a factor of the solution set.

Example 3.5 Take a planar cubic, defined by f(x, y). Consider y as a function of x: y = y(x), then:

f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))
= y3 − t1(x)y

2 + t2(x)y − t3(x)
(59)

As deg(f) = 3, the coefficient with y2 in f(x, y(x)) must be linear, it is the linear trace t1(x) = c1x + c0.
To determine the coefficients c0 and c1, we sample the cubic at x = x0 and x = x1. Denote the samples

23



by {(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}. The coefficients c0 and c1 are then the
solutions of the linear system {

y00 + y01 + y02 = c1x0 + c0
y10 + y11 + y12 = c1x1 + c0

(60)

With t1 we can predict the sum of the y’s for a fixed choice of x. For example, samples at x = x2 are
{(x2, y20), (x2, y21), (x2, y22)}. Comparing the predicted value t1(x2) with the actual sum is implemented
by the equality c1x2 + c0 = y20 + y21 + y22. If the samples would have been drawn from a quartic instead
of a cubic, the the actual sum of the y-values at x2 would have been different from t1(x2) and the test
would fail. Figure 6 shows the setup for the linear trace test. ¦

f−1(0)
x0

s
y00s
y01

s
y02

x1

s
y10

s
y11

s
y12

x2

s
y20

s
y21s
y22

Figure 6: Illustration of the linear trace test on a cubic. We compare the predicted value for t1(x2) with
the actual sum of the y-values at x2.

Exercise 3.5 Consider again the system (50) for which you computed a witness set in Exercise 3.1. Give
this witness set as input to phc -f and compute the number of irreducible factors. Use the combinatorial
enumeration of all possible factors, validating each choice with the linear trace. How many irreducible
factors does this system have? Try higher dimensional instances of this problem, i.e.: pick a general 2-by-n
matrix and factor. For which n becomes the combinatorial method too expensive? ¦

Definition 3.6 Let the witness set WL represents a k-dimensional solution set of f(x) = 0, cut out
by k random hyperplanes L. For k other hyperplanes K, we move WL to WK , using the homotopy
hL,K,alpha(x, t) = 0, from t = 0 to 1:

hL,K,α(x, t) =

(
f(x)

α(1− t)L(x) + tK(x)

)
= 0, α ∈ C, (61)

where α is chosen at random. To turn back we generate another random constant β, and use

hK,L,β(x, t) =

(
f(x)

β(1− t)K(x) + tL(x)

)
= 0, β ∈ C. (62)

The homotopies hL,K,α(x, t) = 0 and hK,L,β(x, t) = 0 define a loop in C between t = 0 and t = 1.

Example 3.6 Figure 7 shows the Riemann surface of z3 − w = 0. A witness set consists of three points,
obtained by cutting the surface by a line. Moving the line around the singular point (0, 0), we observe that
the order of the points on the line gets permuted. Such a permutation can only happen if the corresponding
algebraic curve is irreducible. ¦

Algorithm 3.6 monodromy breakup algorithm

24



-2

-1

0 Re(z)

1-1.5
-2

-1

-1

-0.5

Re(z^1/3)

0

0

1
2

0.5

2Im(z)

1

1.5

Figure 7: A four dimensional representation of the Riemann surface of z3 − w. The vertical axis shows
the real part of the cube root, while the coloring (or gray scale) of the surface encodes the imaginary part
Im(z1/3) of the cube root. The sheets do not intersect each other!

Input: WL witness set for a pure dimensional solution set.
Output: P is a partition of WL,

every set in P represents an irreducible factor.
Implementation: phc -f.

Theorem 3.6 (monodromy group actions) While looping around singularities, permutations among
generic points can only happen when the generic points belong to the same irreducible factor. Moreover,
transitivity between the permutations applies.

Exercise 3.6 Consider once more the system (50) for which you computed a witness set in Exercise 3.1.
Answer the same questions as in Exercise 3.5, but now use the monodromy breakup algorithm. Also try
higher dimensional instances of this problem. For which n becomes the monodromy breakup algorithm
more efficient than the combinatorial method? ¦

Bibliographic Notes. The factorization over the complex numbers is also known as “Absolute Factoriza-
tion”. See [15] for an excellent treatment of methods for this problem. Finding polynomial time algorithms
for factoring multivariate polynomials was listed as an challenging open problem in [57]. Recent papers
on this problem are [14], [18, 17], [33], [31, 32], [50], [104], and [115]. The theoretical use of homotopies
to study the complexity of this problem was done in [8]. Computer algebra methods to graph Riemann
surfaces are described in [19] and [6]. We proposed the use of monodromy in [109] and the validation by
the linear trace in [111].

25



3.4 Diagonal Homotopies to Intersect Pure Dimensional Solution Sets

Definition 3.7 Consider two pure dimensional algebraic sets VA and VB in Cn. Denote dim(VA) = a,
dim(VB) = b, deg(VA) = α, and deg(VB) = β. For simplicity we consider only complete intersections: VA
is defined by fA(x) = 0, a system of n − a equations, VB by fB(x) = 0, a system of n − b equations,
x ∈ Cn. Generic points on VA and VB satisfy the respective linear systems LA(x) = 0 and LB(x) = 0, of
respectively a and b linear equations. Summarizing our notation, we have

#{ x ∈ Cn | fA(x) = 0, LA(x) = 0 } = α and #{ x ∈ Cn | fB(x) = 0, LB(x) = 0 } = β. (63)

Again for simplicity we assume dim(A∩B) = 0. To compute A∩B, we define (a very special case of) the
diagonal homotopy:

h(x,y, t) =





fA(x) = 0
fB(y) = 0

(1− t)

(
LA(x)
LB(y)

)
+ t(x− y) = 0

(64)

which starts at t = 0 at the α× β solutions in A×B ∈ Cn+n. At t = 1, we find solutions at the diagonal
x = y, in A ∩ B.

Example 3.7 This example illustrates why we need new homotopies to intersect witness sets. Stacking
two (possibly identical) systems to find A∩B is not sufficient. For example, suppose A is the line x2 = 0, as
solution of fA(x1, x2) = x1x2 = 0 and B is the line x1−x2 = 0, as solution of fB(x1, x2) = x1(x1−x2) = 0.
The problem is that A ∩ B = {(0, 0)} does not occur as an irreducible solution component of the system

{
fA(x1, x2) = x1x2 = 0
fB(x1, x2) = x1(x1 − x2) = 0

(65)

as the origin (0, 0) is a nonisolated solution on the solution line x1 = 0 of the system obtained by stacking
fA and fB . ¦

Algorithm 3.7 diagonal homotopy

Input: witness sets WA and WB representing sets A and B.
Output: [W0,W1, . . . ,Wk] superwitness sets representing A ∩B.
Implementation: phc -w.

Theorem 3.7 (witness set intersection) Every isolated solution of A ∩ B lies at the end of a path
defined by the diagonal homotopy.

Exercise 3.7 Consider again the system (5) first introduced in Example 2.3. To compute all exceptional
values for the parameter a we could look for those vectors for which the Jacobian matrix of the system
becomes singular. In particular, consider the system








∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3







λ1

λ2

λ3


 =




0
0
0




c0 + c1λ1 + c2λ2 + c3λ3 = 0

(66)

where the coefficients c0, c1, c2, and c2 are randomly chosen complex numbers. Compute witness sets for
the systems (5) and (66) and take the product of the degrees. Compare this product with the number
of solutions from the system obtained just by stacking (5) and (66) together and solving it by phc -b.

26



Collect the values for a and verify what happens in all these exceptional instances of the parameter a. For
isolated singularities, the “verify” means to compute the multiplicity structure after deflation. Positive
dimensional solution sets are “verified” by a witness set, eventually partitioned into sets corresponding to
irreducible components. ¦

Definition 3.8 Let f(x) = 0 be a polynomial system of N equations. Let k be a natural number,
0 < k < N . A witness stone is a superwitness set for the solution set defined by the first k equations of
f(x) = 0.

Example 3.8 We consider again the system (56), from Example 3.4. Figure 8 shows the flow of the
equation-by-equation solver. The total number of paths to be tracked is 24, ten paths diverge to ∞. ¦

#X1 = 3

?
3

#Ŵ 1
1 = 3 Ŵ 1

2 = ∅ Ŵ 1
3 = ∅

?
3

f2(w)=0?

Q
Q
Q
Y
´
´
´
¡
¡

N

@
@

#X2 = 4

?
4

f1(w)=0?

Q
Q
Q
Y
´
´
´

@
@
N

¡
¡-3 ¾ 4

¡
¡ª

7 @5- ∞

'

&

$

%
diagonal
homotopy

3× 4

Ŵ 2
1 = ∅ #Ŵ 2

2 = 7 Ŵ 2
3 = ∅

?
7

?
3

?
3

#X3 = 3

f1(w)=0?
f2(w)=0?

Q
Q
Q
Y
´
´
´

@
@
N

¡
¡f3(w)=0?

Q
Q
Q
Y
´
´
´
¡
¡

N

@
@ -4 ¾3

¡
¡ª

7 HHj5 ∞

'

&

$

%
diagonal
homotopy

4× 3

#Ŵ 3
1 = 0 #Ŵ 3

2 = 3 #Ŵ 3
3 = 7

Figure 8: Flow of the equation-by-equation solver on system (56).

Algorithm 3.8 equation-by-equation solver

Input: f(x) = 0, a polynomial system.
Output: [W0,W1, . . . ,Wn−1] superwitness sets to represent f−1(0).
Implementation: phc -a.

Theorem 3.8 (equation-by-equation solver) The equation-by-equation solver finds superwitness sets
for all solution sets of all dimensions defined by a polynomial system.

27



Exercise 3.8 Consider again the system (58), solved in Exercise 3.4. Run phc -a on this system and
experiment with different orders of the equations. What is the best order of the equations? ¦

Bibliographic Notes. The diagonal homotopies were presented in [114]. In [116] we developed a version
in intrinsic coordinates. The equation-by-equation solver was described in [106]. See [117] for another
survey on numerical algebraic geometry. Using lifting fibers, an equation-by-equation solver was presented
in [44] and [64].

4 Lecture III: Software and Applications

This last lecture is not really a lecture, but an invitation to a hands-on session, to use phc to solve the
exercises of Lectures I and II. The sections below describe some essential information about PHCpack,
such as input-output formats and modes of operation.

4.1 Examples, Applications, Benchmarks

Polynomial systems occur in a wide variety of applications in science and engineering. A system that
was once an application become an example to illustrate certain tools and techniques or a benchmark to
compare the performance. The format in which phc accepts polynomial systems on input is as follows:

3 8

x11*x22 - x21*x12;

x12*x23 - x22*x13;

x13*x24 - x23*x14;

The first line contains respectively the number of equations and the number of unknowns. If the second
number is omitted, then phc assumes the system has as many unknowns as equations. The polynomials
are read in symbolic form, and separated by semicolons.

The i and I represent the imaginary unit
√
−1 and should not be used as names of variables. Similarly,

the e and E are used to denote floating-point numbers in scientific notation and should also not be used
as symbols for variables in the polynomials.

Because any polynomial system can serve as a start system, solutions may be added to the input file.
phc will recognize a list of solutions if they are in the format

THE SOLUTIONS :

1 2

===========================================================

solution 1 :

t : 1.00000000000000E+00 0.00000000000000E+00

m : 1

the solution for t :

x : -3.23606797749979E+00 0.00000000000000E+00

y : 0.00000000000000E+00 -1.27201964951407E+00

== err : 1.174E-15 = rco : 1.079E-01 = res : 4.441E-16 ==

The banner THE SOLUTIONS : is followed by the number of solutions in the list and the dimension of the
solution vectors. All complex values are listed as a sequence of real and imaginary numbers. The first
value is the value for the continuation parameter t, then followed by the multiplicity m.

The components of the solution vector occur in the order in which phc read the polynomials. If y was
read before x, then in the solution vectors, values for y will come before the values for x. One could impose

28



on phc an order of the symbols, for example: x before y, by giving the null polynomial x + y - x - y as
the first part of the input system.

The err, rco, and res report information from Newton’s method: err is the magnitude of the correc-
tion term |∆x|, rco is an estimate for the inverse of the condition number, and res is the magnitude of
the residual vector |f(x)|.

4.2 Using phc in blackbox or toolbox mode

PHC stands for Polynomial Homotopy Continuation in the software package PHCpack. We write PHCpack

when we intend the whole package, i.e.: source code, examples, makefiles, executables, etc. Most users
never compile the code, but use the program in executable form (either on Linux, Windows, MacOS X,
or Sun), and then we refer to the program as phc as this is the recommended name to save the program.
Windows users should know that the program runs from the command line, so one should open a DOS
command prompt window first to use the program.

PHCpack offers two blackbox solvers. The original one, invoked as phc -b was already operational in
the first public release of the source code [129]. This blackbox solver is primarily aimed at approximating
all isolated solutions of a polynomial system. A new blackbox facility is phc -a, which provides a first
implementation of the new equation-by-equation solver. In principle, this option computes superwitness
sets for all solutions, of all dimensions, but currently, it is not yet as stable as phc -b. Calling phc without
any option shows an overview of all available options and runs the program in full interactive mode.

4.3 PHCmaple: A Maple Interface to PHCpack

PHCmaple is a Maple module which provides an interface to the executable phc, presented in [65]. The
use of a computer algebra system like Maple to formulate and document polynomial systems is quite
natural. PHCmaple facilitates the use of phc. Currently, PHCmaple does not yet support the complete
functionality of phc and for this tutorial we will not use PHCmaple.

4.4 Parallel PHCpack calls phc from C programs

Path following methods enjoy the advantage that they scale very well on multiprocessor machines. In [137]
and [66], the path trackers in PHCpack were called from C programs using MPI on clusters. In addition
to the parallel aspects of the code, the interface to PHCpack is a low-level alternative to PHCmaple. As
this interface turns PHCpack into a state machine, the calling program does not need to define any data
structures (for polynomial systems, lists of solutions, etc.) which are already provided by PHCpack.

References

[1] E.L. Allgower, K. Böhmer, A. Hoy, and V. Janovský. Direct methods for solving singular nonlinear
equations. ZAMM Z. Angew. Math. Meth., 79(4):219–231, 1999.

[2] E.L. Allgower and K. Georg. Numerical Continuation Methods, an Introduction, volume 13 of
Springer Ser. in Comput. Math. Springer–Verlag, 1990.

[3] E.L. Allgower and K. Georg. Continuation and path following. Acta Numerica, pages 1–64, 1993.

[4] E.L. Allgower and K Georg. Numerical Path Following. In P.G. Ciarlet and J.L. Lions, editors,
Techniques of Scientific Computing (Part 2), volume 5 of Handbook of Numerical Analysis, pages
3–203. North-Holland, 1997.

29



[5] E.L. Allgower and K. Georg. Introduction to Numerical Continuation Methods, volume 45 of Classics
in Applied Mathematics. SIAM, 2003.

[6] D.A. Aruliah and R.M. Corless. Numerical parametrization of affine varieties using ODEs. In
J. Gutierrez, editor, Proceedings of the 2004 International Symposium on Symbolic and Algebraic
Computation (ISSAC 2004), pages 12–18. ACM, 2004.

[7] J. Backelin and R. Fröberg. How we proved that there are exactly 924 cyclic 7-roots. In Proceedings
of the 1991 International Symposium on Symbolic and Algebraic Computation, pages 101–111. ACM,
1991.

[8] C. Bajaj, J. Canny, T. Garrity, and J. Warren. Factoring rational polynomials over the complex
numbers. SIAM J. Comput., 22(2):318–331, 1993.

[9] D.N. Bernshtěın. The number of roots of a system of equations. Functional Anal. Appl., 9(3):183–185,
1975. Translated from Funktsional. Anal. i Prilozhen., 9(3):1–4,1975.

[10] G. Björk and R. Fröberg. A faster way to count the solutions of inhomogeneous systems of algebraic
equations, with applications to cyclic n-roots. J. Symbolic Computation, 12(3):329–336, 1991.

[11] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer–Verlag,
1998.

[12] O. Bottema and B. Roth. Theoretical Kinematics. North-Holland, Amsterdam, 1979.

[13] J. Canny and J.M. Rojas. An optimal condition for determining the exact number of roots of
a polynomial system. In S.M. Watt, editor, Proceedings of the 1991 International Symposium on
Symbolic and Algebraic Computation (ISSAC 1991), pages 96–101. ACM, 1991.

[14] G. Chèze. Absolute polynomial factorization in two variables and the knapsack problem. In J. Gutier-
rez, editor, Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation
(ISSAC 2004), pages 87–94. ACM, 2004.

[15] G. Chèze and A. Galligo. Four lectures on polynomial absolute factorization. In Solving Polynomial
Equations. Foundations, Algorithms and Applications, volume 14 of Algorithms and Computation in
Mathematics, pages 339–394. Springer–Verlag, 2005.

[16] S.N. Chow, J. Mallet-Paret, and J.A. Yorke. Homotopy method for locating all zeros of a system
of polynomials. In H.O. Peitgen and H.O. Walther, editors, Functional differential equations and
approximation of fixed points, volume 730 of Lecture Notes in Mathematics, pages 77–88. Springer–
Verlag, 1979.

[17] R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt. A geometric-numeric algorithm for factoring
multivariate polynomials. In T. Mora, editor, Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2002), pages 37–45. ACM, 2002.

[18] R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas, and S.M. Watt. Towards factoring
bivariate approximate polynomials. In B. Mourrain, editor, Proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation (ISSAC 2001), pages 85–92. ACM, 2001.

[19] R.M. Corless and D.J. Jeffrey. Graphing elementary Riemann surfaces. SIGSAM Bulletin, 32(1):11–
17, 1998.

[20] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry, volume 185 of Graduate Texts in
Mathematics. Springer-Verlag, 1998.

30



[21] Y. Dai, S. Kim, and M. Kojima. Computing all nonsingular solutions of cyclic-n polynomial using
polyhedral homotopy continuation methods. J. Comput. Appl. Math., 152(1-2):83–97, 2003.

[22] B.H. Dayton and Z. Zeng. Computing the multiplicity structure in solving polynomial systems.
In M. Kauers, editor, Proceedings of the 2005 International Symposium on Symbolic and Algebraic
Computation, pages 116–123. ACM, 2005.

[23] J.P. Dedieu and M. Shub. Newton’s method for overdetermined systems of equations. Math. Comp.,
69(231):1099–1115, 1999.

[24] P. Deuflard, B. Friedler, and P. Kunkel. Efficient numerical path folowing beyond critical points.
SIAM J. Numer. Anal., 24:912–927, 1987.

[25] P. Diaconis, D. Eisenbud, and B. Sturmfels. Lattice walks and primary decomposition. In B.E.
Sagan and R.P. Stanley, editors, Mathematical Essays in Honor of Gian-Carlo Rota, volume 161 of
Progress in Mathematics, pages 173–193. Birkhäuser, 1998.

[26] F.J. Drexler. Eine Methode zur Berechnung sämtlicher Lösungen von Polynomgleichungssystemen.
Numer. Math., 29(1):45–58, 1977.

[27] I.Z. Emiris. Toric resultants and applications to geometric modelling. In Solving Polynomial Equa-
tions. Foundations, Algorithms and Applications, volume 14 of Algorithms and Computation in Math-
ematics, pages 269–300. Springer–Verlag, 2005.

[28] I.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the sparse resultant and the mixed
volume. J. Symbolic Computation, 20(2):117–149, 1995.

[29] I.Z. Emiris and B. Mourrain. Computer algebra methods for studying and computing molecular
conformations. Algorithmica, 25:372–402, 1999.

[30] I.Z. Emiris and J. Verschelde. How to count efficiently all affine roots of a polynomial system.
Discrete Applied Mathematics, 93(1):21–32, 1999.

[31] A. Galligo and D. Rupprecht. Semi-numerical determination of irreducible branches of a reduced
space curve. In B. Mourrain, editor, Proceedings of the 2001 International Symposium on Symbolic
and Algebraic Computation (ISSAC 2001), pages 137–142. ACM, 2001.

[32] A. Galligo and D. Rupprecht. Irreducible decomposition of curves. J. Symbolic Computation,
33(5):661–677, 2002.

[33] S. Gao, E Kaltofen, J May, Z. Yang, and L. Zhi. Approximate factorization of multivariate poly-
nomials via differential equations. In J. Gutierrez, editor, Proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation (ISSAC 2004), pages 167–174. ACM, 2004.

[34] T. Gao and T.Y. Li. Mixed volume computation via linear programming. Taiwan J. of Math.,
4:599–619, 2000.

[35] T. Gao and T.Y. Li. Mixed volume computation for semi-mixed systems. Discrete Comput. Geom.,
29(2):257–277, 2003.

[36] T. Gao, T.Y. Li, J. Verschelde, and M. Wu. Balancing the lifting values to improve the numerical
stability of polyhedral homotopy continuation methods. Appl. Math. Comput., 114:233–247, 2000.

[37] T. Gao, T.Y. Li, and X. Wang. Finding isolated zeros of polynomial systems in Cn with stable mixed
volumes. J. of Symbolic Computation, 28(1-2):187–211, 1999.

31



[38] T. Gao, T.Y. Li, and M. Wu. Algorithm 846: MixedVol: a software package for mixed-volume
computation. ACM Trans. Math. Softw., 31(4):555–560, 2005.

[39] C.B. Garcia and T.Y. Li. On the number of solutions to polynomial systems of equations. SIAM J.
Numer. Anal., 17(4):540–546, 1980.

[40] C.B. Garcia and W.I. Zangwill. Finding all solutions to polynomial systems and other systems of
equations. Math. Programming, 16(2):159–176, 1979.

[41] I.M. Gel’fand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants, Resultants and Multidimen-
sional Determinants. Birkhäuser, 1994.

[42] M. Giusti and J. Heintz. La détermination de la dimension et des points isolées d’une variété
algébrique peuvent s’effectuer en temps polynomial. In D. Eisenbud and L. Robbiano, editors,
Computational Algebraic Geometry and Commutative Algebra, Cortona 1991, volume XXXIV of
Symposia Mathematica, pages 216–256. Cambridge University Press, 1993.

[43] M. Giusti and J. Heinz. Kronecker’s smart, little black boxes. In DeVore, R.A. and Iserles, A. and
Süli, E., editor, Foundations of Computational Mathematics, volume 284 of London Mathematical
Society Lecture Note Series, pages 69–104. Cambridge University Press, 2001.

[44] M. Giusti, G. Lecerf, and B. Salvy. A gröbner free alternative for polynomial system solving. J.
Complexity, 17(1):154–211, 2001.

[45] W.J.F. Govaerts. Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, 2000.

[46] G.M. Greuel and G. Pfister. Advances and improvements in the theory of standard bases and
syzygies. Arch. Math., 66:163–196, 1996.

[47] G.M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer-Verlag, 2002.

[48] A. Griewank. On solving nonlinear equations with simple singularities or nearly singular solutions.
SIAM Review, 27(4):537–563, 1985.

[49] S. Hoşten and J. Shapiro. Primary decomposition of lattice basis ideals. Journal of Symbolic Com-
putation, 29(4&5):625–639, 2000.

[50] Y. Huang, W. Wu, H.J. Stetter, and L. Zhi. Pseudofactors of multivariate polynomials. In
C. Traverso, editor, Proceedings of the 2000 International Symposium on Symbolic and Algebraic
Computation (ISSAC 2000), pages 161–168. ACM, 2000.

[51] B. Huber, J. Rambau, and F. Santos. The Cayley trick, lifting subdivisions and the Bohne-Dress
theorem on zonotopal tilings. J. Eur. Math. Soc., 2(2):179–198, 2000.

[52] B. Huber and B. Sturmfels. A polyhedral method for solving sparse polynomial systems. Math.
Comp., 64(212):1541–1555, 1995.

[53] B. Huber and B. Sturmfels. Bernstein’s theorem in affine space. Discrete Comput. Geom., 17(2):137–
141, 1997.

[54] B. Huber and J. Verschelde. Polyhedral end games for polynomial continuation. Numerical Algo-
rithms, 18(1):91–108, 1998.

[55] I. Itenberg and E. Shustin. Viro theorem and topology of real and complex combinatorial hypersur-
faces. Israel Math. J., 133:189–238, 2003.

[56] I. Itenberg and O. Viro. Patchworking algebraic curves disproves the ragsdale conjecture. The
Mathematical Intelligencer, 18(4):19–28, 1996.

32



[57] E. Kaltofen. Challenges of symbolic computation: my favorite open problems. J. Symbolic Compu-
tation, 29(6):891–919, 2000.

[58] A.G. Khovanskǐı. Newton polyhedra and the genus of complete intersections. Functional Anal. Appl.,
12(1):38–46, 1978. Translated from Funktsional. Anal. i Prilozhen. 12(1),51–61,1978.

[59] S. Kim and M. Kojima. Numerical stability of path tracing in polyhedral homotopy continuation
methods. Computing, 73(4):329–348, 2004.

[60] P. Kunkel. Efficient computation of singular points. IMA J. Numer. Anal., 9:421–433, 1989.

[61] P. Kunkel. A tree-based analysis of a family of augmented systems for the computation of singular
points. IMA J. Numer. Anal., 16:501–527, 1996.

[62] A.G. Kushnirenko. Newton Polytopes and the Bézout Theorem. Functional Anal. Appl., 10(3):233–
235, 1976. Translated from Funktsional. Anal. i Prilozhen. 10(3),82–83,1976.

[63] G. Lecerf. Quadratic Newton iteration for systems with multiplicity. Found. Comput. Math., 2:247–
293, 2002.

[64] G. Lecerf. Computing the equidimensional decomposition of an algebraic closed set by means of
lifting fibers. J. Complexity, 19(4):564–596, 2003.

[65] A. Leykin and J. Verschelde. PHCmaple: A Maple interface to the numerical homotopy algorithms
in PHCpack. In Quoc-Nam Tran, editor, Proceedings of the Tenth International Conference on
Applications of Computer Algebra (ACA’2004), pages 139–147, 2004.

[66] A. Leykin and J. Verschelde. Factoring solution sets of polynomial systems in parallel. In Tor
Skeie and Chu-Sing Yang, editors, Proceedings of the 2005 International Conference on Parallel
Processing Workshops. 14-17 June 2005. Oslo, Norway. High Performance Scientific and Engineering
Computing, pages 173–180. IEEE Computer Society, 2005.

[67] A. Leykin, J. Verschelde, and A. Zhao. Newton’s method with deflation for isolated singularities of
polynomial systems. Theoretical Computer Science, 359(1-3):111–122, 2006.

[68] T.Y. Li. On Chow, Mallet-Paret and Yorke homotopy for solving systems of polynomials. Bulletin
of the Institute of Mathematics. Acad. Sin., 11:433–437, 1983.

[69] T.Y. Li. Solving polynomial systems. The Mathematical Intelligencer, 9(3):33–39, 1987.

[70] T.Y. Li. Numerical solution of polynomial systems by homotopy continuation methods. In F. Cucker,
editor, Handbook of Numerical Analysis. Volume XI. Special Volume: Foundations of Computational
Mathematics, pages 209–304. North-Holland, 2003.

[71] T.Y. Li and X. Li. Finding mixed cells in the mixed volume computation. Found. Comput. Math.,
1(2):161–181, 2001. Software available at http://www.math.msu.edu/~li.

[72] T.Y. Li and T. Sauer. Regularity results for solving systems of polynomials by homotopy method.
Numer. Math., 50(3):283–289, 1987.

[73] T.Y. Li, T. Sauer, and J.A. Yorke. Numerical solution of a class of deficient polynomial systems.
SIAM J. Numer. Anal., 24(2):435–451, 1987.

[74] T.Y. Li, T. Sauer, and J.A. Yorke. The random product homotopy and deficient polynomial systems.
Numer. Math., 51(5):481–500, 1987.

[75] T.Y. Li, T. Sauer, and J.A. Yorke. The cheater’s homotopy: an efficient procedure for solving systems
of polynomial equations. SIAM J. Numer. Anal., 26(5):1241–1251, 1989.

33



[76] T.Y. Li, T. Wang, and X. Wang. Random product homotopy with minimal BKK bound. In J. Rene-
gar, M. Shub, and S. Smale, editors, The Mathematics of Numerical Analysis, volume 32 of Lectures
in Applied Mathematics, pages 503–512. AMS, 1996. Proceedings of the AMS-SIAM Summer Seminar
in Applied Mathematics. Park City, Utah, July 17-August 11, 1995, Park City, Utah.

[77] T.Y. Li and X. Wang. Solving deficient polynomial systems with homotopies which keep the sub-
schemes at infinity invariant. Math. Comp., 56(194):693–710, 1991.

[78] T.Y. Li and X. Wang. Nonlinear homotopies for solving deficient polynomial systems with parame-
ters. SIAM J. Numer. Anal., 29(4):1104–1118, 1992.

[79] T.Y. Li and X. Wang. Solving real polynomial systems with real homotopies. Math. Comp., 60:669–
680, 1993.

[80] T.Y. Li and X. Wang. Higher order turning points. Appl. Math. Comput., 64:155–166, 1994.

[81] T.Y. Li and X. Wang. The BKK root count in Cn. Math. Comp., 65(216):1477–1484, 1996.

[82] F. Mora. An algorithm to compute the equations of tangent cones. In J. Calmet, editor, Computer
Algebra. EUROCAM’82, European Computer Algebra Conference. Marseille, France, April 1982.,
volume 144 of Lecture Notes in Computer Science, pages 158–165. Springer-Verlag, 1982.

[83] A. Morgan. Solving polynomial systems using continuation for engineering and scientific problems.
Prentice-Hall, 1987.

[84] A. Morgan and V. Shapiro. Box-bisection for solving second-degree systems and the problem of
clustering. ACM Trans. Math. Soft., 13(2):152–167, 1987.

[85] A. Morgan and A. Sommese. Computing all solutions to polynomial systems using homotopy con-
tinuation. Appl. Math. Comput., 24(2):115–138, 1987. Errata: Appl. Math. Comput. 51 (1992), p.
209.

[86] A. Morgan and A. Sommese. A homotopy for solving general polynomial systems that respects
m-homogeneous structures. Appl. Math. Comput., 24(2):101–113, 1987.

[87] A.P. Morgan. A method for computing all solutions to systems of polynomial equations. ACM Trans.
Math. Softw., 9(1):1–17, 1983.

[88] A.P. Morgan and A.J. Sommese. Coefficient-parameter polynomial continuation. Appl. Math. Com-
put., 29(2):123–160, 1989. Errata: Appl. Math. Comput. 51:207(1992).

[89] A.P. Morgan and A.J. Sommese. Generically nonsingular polynomial continuation. In E.L. Allgower
and K. Georg, editors, Computational Solution of Nonlinear Systems of Equations, pages 467–493.
AMS, 1990.

[90] A.P. Morgan, A.J. Sommese, and C.W. Wampler. Computing singular solutions to nonlinear analytic
systems. Numer. Math., 58(7):669–684, 1991.

[91] A.P. Morgan, A.J. Sommese, and C.W. Wampler. Computing singular solutions to polynomial
systems. Adv. Appl. Math., 13(3):305–327, 1992.

[92] A.P. Morgan, A.J. Sommese, and C.W. Wampler. A power series method for computing singular
solutions to nonlinear analytic systems. Numer. Math., 63:391–409, 1992.

[93] A.P. Morgan, A.J. Sommese, and C.W. Wampler. A product-decomposition theorem for bounding
Bézout numbers. SIAM J. Numer. Anal., 32(4):1308–1325, 1995.

34



[94] B. Mourrain. Isolated points, duality and residues. J. of Pure and Applied Algebra, 117 & 118:469–
493, 1996.

[95] T. Ojika. Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear
algebraic equations. J. Math. Anal. Appl., 123:199–221, 1987.

[96] T. Ojika. Modified deflation algorithm for the solution of singular problems. II. Nonlinear multipoint
boundary value problems. J. Math. Anal. Appl., 123:222–237, 1987.

[97] T. Ojika. A numerical method for branch points of a system of nonlinear algebraic equations. Applied
Numerical Mathematics, 4:419–430, 1988.

[98] T. Ojika, S. Watanabe, and T. Mitsui. Deflation algorithm for the multiple roots of a system of
nonlinear equations. J. Math. Anal. Appl., 96:463–479, 1983.

[99] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables,
volume 30 of Classics in Applied Mathematics. SIAM, 2000.

[100] J.M. Rojas. A convex geometric approach to counting the roots of a polynomial system. Theoret.
Comput. Sci., 133(1):105–140, 1994.

[101] J.M. Rojas. Toric intersection theory for affine root counting. Journal of Pure and Applied Algebra,
136(1):67–100, 1999.

[102] J.M. Rojas and X. Wang. Counting affine roots of polynomial systems via pointed Newton polytopes.
J. Complexity, 12:116–133, 1996.

[103] J. Sabia. Algorithms and their complexities. In Solving Polynomial Equations. Foundations, Algo-
rithms and Applications, volume 14 of Algorithms and Computation in Mathematics, pages 241–268.
Springer–Verlag, 2005.

[104] T. Sasaki. Approximate multivariate polynomial factorization based on zero-sum relations. In
B. Mourrain, editor, Proceedings of the 2001 International Symposium on Symbolic and Algebraic
Computation (ISSAC 2001), pages 284–291. ACM, 2001.

[105] A.J. Sommese and J. Verschelde. Numerical homotopies to compute generic points on positive
dimensional algebraic sets. J. of Complexity, 16(3):572–602, 2000.

[106] A.J. Sommese, J. Verschelde, and C.W. Wampler. Solving polynomial systems equation by equation.
Submitted for publication.

[107] A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical decomposition of the solution sets of
polynomial systems into irreducible components. SIAM J. Numer. Anal., 38(6):2022–2046, 2001.

[108] A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical irreducible decomposition using projec-
tions from points on the components. In E.L. Green, S. Hoşten, R.C. Laubenbacher, and V. Powers,
editors, Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, volume
286 of Contemporary Mathematics, pages 37–51. AMS, 2001.

[109] A.J. Sommese, J. Verschelde, and C.W. Wampler. Using monodromy to decompose solution sets of
polynomial systems into irreducible components. In C. Ciliberto, F. Hirzebruch, R. Miranda, and
M. Teicher, editors, Application of Algebraic Geometry to Coding Theory, Physics and Computation,
pages 297–315. Kluwer Academic Publishers, 2001. Proceedings of a NATO Conference, February
25 - March 1, 2001, Eilat, Israel.

35



[110] A.J. Sommese, J. Verschelde, and C.W. Wampler. A method for tracking singular paths with appli-
cation to the numerical irreducible decomposition. In M.C. Beltrametti, F. Catanese, C. Ciliberto,
A. Lanteri, and C. Pedrini, editors, Algebraic Geometry, a Volume in Memory of Paolo Francia,
pages 329–345. Walter de Gruyter, 2002.

[111] A.J. Sommese, J. Verschelde, and C.W. Wampler. Symmetric functions applied to decomposing
solution sets of polynomial systems. SIAM J. Numer. Anal., 40(6):2026–2046, 2002.

[112] A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical irreducible decomposition using
PHCpack. In M. Joswig and N. Takayama, editors, Algebra, Geometry, and Software Systems,
pages 109–130. Springer–Verlag, 2003.

[113] A.J. Sommese, J. Verschelde, and C.W. Wampler. Advances in polynomial continuation for solving
problems in kinematics. ASME J. of Mechanical Design, 126(2):262–268, 2004.

[114] A.J. Sommese, J. Verschelde, and C.W. Wampler. Homotopies for intersecting solution components
of polynomial systems. SIAM J. Numer. Anal., 42(4):552–1571, 2004.

[115] A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical factorization of multivariate complex
polynomials. Theoretical Computer Science, 315(2-3):651–669, 2004. Special Issue on Algebraic and
Numerical Algorithms edited by I.Z. Emiris, B. Mourrain, and V.Y. Pan.

[116] A.J. Sommese, J. Verschelde, and C.W. Wampler. An intrinsic homotopy for intersecting algebraic
varieties. J. of Complexity, 21(4):593–608, 2005.

[117] A.J. Sommese, J. Verschelde, and C.W. Wampler. Introduction to numerical algebraic geometry. In
Solving Polynomial Equations. Foundations, Algorithms and Applications, volume 14 of Algorithms
and Computation in Mathematics, pages 301–337. Springer–Verlag, 2005.

[118] A.J. Sommese and C.W. Wampler. Numerical algebraic geometry. In J. Renegar, M. Shub, and
S. Smale, editors, The Mathematics of Numerical Analysis, volume 32 of Lectures in Applied Math-
ematics, pages 749–763. AMS, 1996. Proceedings of the AMS-SIAM Summer Seminar in Applied
Mathematics. Park City, Utah, July 17-August 11, 1995, Park City, Utah.

[119] A.J. Sommese and C.W. Wampler. The Numerical solution of systems of polynomials arising in
engineering and science. World Scientific Press, Singapore, 2005.

[120] M. Sosonkina, L.T. Watson, and D.E. Stewart. Note on the end game in homotopy zero curve
tracking. ACM Trans. Math. Softw., 22(3):281–287, 1996.

[121] H.J. Stetter. Numerical Polynomial Algebra. SIAM, 2004.

[122] H.J. Stetter and G.T. Thallinger. Singular systems of polynomials. In O. Gloor, editor, Proceedings
of ISSAC 1998, pages 9–16. ACM, 1998.

[123] B. Sturmfels. On the Newton polytope of the resultant. Journal of Algebraic Combinatorics, 3:207–
236, 1994.

[124] B. Sturmfels. On the number of real roots of a sparse polynomial system. In A. Bloch, editor,
Hamiltonian and Gradient Flows: Algorithms and Control, pages 137–143. AMS, 1994.

[125] B. Sturmfels. Viro’s theorem for complete intersections. Annali della Scuola Normale Superiore di
Pisa, 21(3):377–386, 1994.

[126] B. Sturmfels. Polynomial equations and convex polytopes. Amer. Math. Monthly, 105(10):907–922,
1998.

36



[127] B. Sturmfels. Solving Systems of Polynomial Equations. Number 97 in CBMS Regional Conference
Series in Mathematics. AMS, 2002.

[128] A. Takeda, M. Kojima, and K. Fujisawa. Enumeration of all solutions of a combinatorial linear
inequality system arising from the polyhedral homotopy continuation method. Journal of the Oper-
ations Research Society of Japan, 45(1):64–82, 2002.

[129] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by
homotopy continuation. ACM Trans. Math. Softw., 25(2):251–276, 1999. Software available at
http://www.math.uic.edu/~jan.

[130] J. Verschelde. Toric newton method for polynomial homotopies. J. Symbolic Computation, 29(4–
5):777–793, 2000.

[131] J. Verschelde and R. Cools. Symbolic homotopy construction. Applicable Algebra in Engineering,
Communication and Computing, 4(3):169–183, 1993.

[132] J. Verschelde and R. Cools. Symmetric homotopy construction. J. Comput. Appl. Math., 50:575–592,
1994.

[133] J. Verschelde and K. Gatermann. Symmetric Newton polytopes for solving sparse polynomial sys-
tems. Adv. Appl. Math., 16(1):95–127, 1995.

[134] J. Verschelde, K. Gatermann, and R. Cools. Mixed-volume computation by dynamic lifting applied
to polynomial system solving. Discrete Comput. Geom., 16(1):69–112, 1996.

[135] J. Verschelde and A. Haegemans. The GBQ-Algorithm for constructing start systems of homotopies
for polynomial systems. SIAM J. Numer. Anal., 30(2):583–594, 1993.

[136] J. Verschelde, P. Verlinden, and R. Cools. Homotopies exploiting Newton polytopes for solving sparse
polynomial systems. SIAM J. Numer. Anal., 31(3):915–930, 1994.

[137] J. Verschelde and Y. Wang. Computing feedback laws for linear systems with a parallel pieri ho-
motopy. In Yuanyuan Yang, editor, Proceedings of the 2004 International Conference on Parallel
Processing Workshops. 15-18 August 2004. Montreal, Quebec, Canada. High Performance Scientific
and Engineering Computing, pages 222–229. IEEE Computer Society, 2004.

[138] C.W. Wampler. Bezout number calculations for multi-homogeneous polynomial systems. Appl. Math.
Comput., 51(2–3):143–157, 1992.

[139] C.W. Wampler, A.P. Morgan, and A.J. Sommese. Numerical continuation methods for solving
polynomial systems arising in kinematics. ASME J. of Mechanical Design, 112(1):59–68, 1990.

[140] C.W. Wampler, A.P. Morgan, and A.J. Sommese. Complete solution of the nine-point path synthesis
problem for four-bar linkages. ASME J. of Mechanical Design, 114(1):153–159, 1992.

[141] L.T. Watson. Numerical linear algebra aspects of globally convergent homotopy methods. SIAM
Rev., 28(4):529–545, 1986.

[142] L.T. Watson. Globally convergent homotopy methods: a tutorial. Appl. Math. Comput., 31(Spec.
Issue):369–396, 1989.

[143] L.T. Watson. Probability-one homotopies in computational science. J. Comput. Appl. Math.,
140(1&2):785–807, 2002.

[144] S.M. Wise, A.J. Sommese, and L.T. Watson. Algorithm 801: POLSYS PLP: a partitioned linear
product homotopy code for solving polynomial systems of equations. ACM Trans. Math. Softw.,
26(1):176–200, 2000.

37



[145] A.H. Wright. Finding all solutions to a system of polynomial equations. Math. Comp., 44(169):125–
133, 1985.

[146] G.M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer–Verlag,
New York, 1995.

[147] W. Zulehner. A simple homotopy method for determining all isolated solutions to polynomial sys-
tems. Math. Comp., 50(181):167–177, 1988.

Appendices: Lists of Definitions, Algorithms, Theorems, Examples, and Exercises

The writing of the tutorial started with identifying 22 algorithms, first described by their input-output
specification, then preceded with more precise definitions and followed by theoretical statements. As
examples and exercises were added to the 22 algorithms, each algorithm is now described by five items.
Each item is listed below with a one line title.

The number “22” is rather arbitrary, more limited to the current capabilities of phc. Identifying (and
implementing (!)) “the” algorithms in numerical algebraic geometry is a long-term research project. This
tutorial is just a snapshot to give a taste of what is currently possible.

Another excellent way to walk through the tutorial is to solve the polynomial systems. The lists below
can serve as an index to this tutorial.

Appendix A. List of Definitions

Definition 2.1 polynomial system
Definition 2.2 artificial-parameter homotopy
Definition 2.3 natural-parameter homotopy
Definition 2.4 permanent of a degree matrix
Definition 2.5 linear-product start system
Definition 2.6 supporting linear-product structure
Definition 2.7 binomial system
Definition 2.8 Newton polytopes and Cayley embedding
Definition 2.9 lifting and regular triangulation
Definition 2.10 regular mixed-cell configuration
Definition 2.12 face system
Definition 2.13 deflation of a system
Definition 2.14 multiplicity matrices
Definition 3.1 embedding and slack variables
Definition 3.2 witness set and geometric degree
Definition 3.3 membership homotopy
Definition 3.4 cascading embeddings and homotopies
Definition 3.5 linear trace function
Definition 3.6 generating loops with homotopies
Definition 3.7 diagonal homotopy
Definition 3.8 witness stone

Appendix B. List of Algorithms

Algorithm 2.1 Newton’s method
Algorithm 2.2 predictor-corrector method
Algorithm 2.3 coefficient-parameter polynomial continuation
Algorithm 2.4 compute the permanent of a degree matrix
Algorithm 2.5 solve a linear-product start system
Algorithm 2.6 extract a linear-product structure
Algorithm 2.7 solve a binomial system
Algorithm 2.8 the Cayley embedding

38



Algorithm 2.9 dynamic lifting
Algorithm 2.10 lift and prune
Algorithm 2.11 solve a random coefficient system
Algorithm 2.12 polyhedral end game
Algorithm 2.13 Newton with deflation
Algorithm 2.14 dual space and multiplicity

Algorithm 3.1 embed a polynomial system
Algorithm 3.2 sampling a solution set
Algorithm 3.3 homotopy membership test
Algorithm 3.4 cascade of homotopies
Algorithm 3.5 linear trace test
Algorithm 3.6 monodromy breakup algorithm
Algorithm 3.7 diagonal homotopy
Algorithm 3.8 equation-by-equation solver

Appendix C. List of Theorems

Theorem 2.1 quadratic convergence of Newton’s method
Theorem 2.2 the gamma trick
Theorem 2.3 generic root count
Theorem 2.4 multihomogeneous Bézout bound
Theorem 2.5 linear-product root count
Theorem 2.6 linear-product start system
Theorem 2.7 regularity of a binomial system
Theorem 2.8 Minkowski’s theorem
Theorem 2.9 cost of placeable triangulations
Theorem 2.10 mixed-cell configuration
Theorem 2.11 Bernshtěın’s first theorem
Theorem 2.12 Bernshtěın’s second theorem
Theorem 2.13 #deflations to restore quadratic convergence
Theorem 2.14 the Hilbert function
Theorem 3.1 Bertini’s theorem
Theorem 3.2 numerical elimination
Theorem 3.3 probability one membership criterium
Theorem 3.4 superwitness set generation
Theorem 3.5 linear trace criterium
Theorem 3.6 monodromy group actions
Theorem 3.7 witness set intersection
Theorem 3.8 equation-by-equation solver

Appendix D. List of Examples

Example 2.1 illustration of one Newton step
Example 2.2 discriminant locus of homotopy
Example 2.3 application from molecular chemistry
Example 2.4 system coming from PUMA robot
Example 2.5 a linear-product start system
Example 2.6 system from a neural network model
Example 2.7 unimodular transformations
Example 2.8 Cayley trick and Minkowski’s theorem
Example 2.9 barycentric decomposition of a point
Example 2.10 a regular mixed-cell configuration
Example 2.11 polyhedral homotopies

39



Example 2.12 Newton polytopes in general position
Example 2.13 illustration of the deflation operator
Example 2.14 multiplicity of an isolated root
Example 3.1 three cases of embedding a system
Example 3.2 projecting the twisted cubic
Example 3.3 homotopy membership test for a cubic
Example 3.4 illustration of cascade of homotopies
Example 3.5 set up for the trace test
Example 3.6 Riemann surface of z3 − w = 0
Example 3.7 why new homotopies are needed
Example 3.8 solve again example for the cascade

Appendix E. List of Exercises

Exercise 2.1 regular versus singular solutions
Exercise 2.2 number of Newton iterations along a path
Exercise 2.3 verify generic root count
Exercise 2.4 enumerate all partitions of a set
Exercise 2.5 construct a linear-product start system
Exercise 2.6 exploit permutation symmetry
Exercise 2.7 compare with Bézout bounds
Exercise 2.8 number of different mixed subdivisions
Exercise 2.9 compute Minkowski polynomial
Exercise 2.10 dynamic versus static lifting
Exercise 2.11 solve the cyclic 7-roots problem
Exercise 2.12 show polytopes not in general position
Exercise 2.13 apply the deflation algorithm
Exercise 2.14 compute multiplicity of isolated root
Exercise 3.1 adjacent 2-by-2-minors of general matrix
Exercise 3.2 verify the degree of a projection
Exercise 3.3 homotopy membership test verification
Exercise 3.4 run cascade on 7-bar mechanism system
Exercise 3.5 use traces to factor adjacent 2-by-2 minors
Exercise 3.6 use monodromy to factor adjacent 2-by-2 minors
Exercise 3.7 verify all exceptional values of a parameter
Exercise 3.8 solve 7-bar mechanism system again

Appendix F. List of Polynomial Systems

System (1): one regular and one triple root
System (5): an application from molecular chemistry
System (8): from a model of a PUMA robot
System (12): neural network model
System (14): a binomial system
System (22): to illustrate the Cayley trick
System (30): the cyclic 7-roots problem
System (38): Newton polytopes in general position
System (40): a simple system with a triple root
System (50): adjacent 2-by-2 minors of a 2-by-4 matrix
System (51): projections of twisted cubic
System (52): a spatial Burmester problem
System (54): to illustrate membership test
System (56): to illustrate cascade of homotopies
System (58): a moving 7-bar mechanism

40


