Below is a pictorial proof of the following formula for the sum of a geometric series.

$$
\begin{equation*}
1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}+\cdots=1 \tag{1}
\end{equation*}
$$

Picture can be found at: http://www.math.uic.edu/ radford/Short2.pdf

1. Write a proof of this equation based on this pictorial argument, but using no pictures. You may use mathematical symbols and equations. Write the proof as if you were explaining it to a friend who must understand it only from your verbal explanation. ${ }^{1}$
2. Now consider the equation:

$$
\begin{equation*}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}+\cdots \tag{2}
\end{equation*}
$$

Explain how to add to the picture given above to show that this series has a finite limit. Do not attempt to find the exact value.

[^0]3. You may choose to incorporate this assignment into essay 1. If not, a separate typed solution to this exercise is due Feb. 17. The outline for Essay 2 is also due on February 17.

[^0]: ${ }^{1}$ Adapted from picture by David Radford and page 118 of Proofs without Words by R.B. Nelson, M.A.A., 1993, where the idea is attributed to Warren Page.

