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Mathematics for Essay 2

Consider the infinite series:
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This is the case, p = 2 of the p-series:
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We know from our discussion in Essay 1 that
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1
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< 2.

We noticed in Essay 1 that these are the areas of a collection of squares that
fit in a 1 by 2 rectangle with a lot left over. We would like to get a better
approximation to the actual value.

Sketch the graph of the function f(x) = 1
x2 . Note that there are disjoint

rectangles with area 1
4 , 1

9 , 1
16 , 1

25 contained in the region bounded by the x-axis,
f(x) = 1

x2 , and the line x = 1. (Take the rectangle formed by going one unit to
the left from the point (n, 1

n2 ) to get area 1
n2 .) So
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More generally
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So for each m, we can get an upper bound on
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The first of these term is finite; find it with a calculator. On the other hand
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For example, taking m = 2, my estimate is (1+1/4)+1/2 = 1 3/4, for m = 3
it is (1 + 1/4 + 1/9) + 1/3 which is approximately 1.69.

Now to estimate the volumes repeat this process but with g(x) = 1
x3 replac-

ing f(x). Remarkably, the exact value for Σ∞n=1
1

n2 is π2

6 while the exact value
of Σ∞n=1

1
n3 is unknown:

See www.mat.bham.ac.uk/C.J.Sangwin/Teaching/pus/infsersup.pdf
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