Consider the infinite series:

$$
\begin{equation*}
1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots+ \tag{1}
\end{equation*}
$$

This is the case, $p=2$ of the p-series:

$$
\Sigma_{n=1}^{\infty} \frac{1}{n^{p}}
$$

We know from our discussion in Essay 1 that

$$
\Sigma_{n=1}^{\infty} \frac{1}{n^{2}}<2
$$

We noticed in Essay 1 that these are the areas of a collection of squares that fit in a 1 by 2 rectangle with a lot left over. We would like to get a better approximation to the actual value.

Sketch the graph of the function $f(x)=\frac{1}{x^{2}}$. Note that there are disjoint rectangles with area $\frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}$ contained in the region bounded by the x-axis, $f(x)=\frac{1}{x^{2}}$, and the line $x=1$. (Take the rectangle formed by going one unit to the left from the point $\left(n, \frac{1}{n^{2}}\right)$ to get area $\frac{1}{n^{2}}$.) So

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x>\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots
$$

More generally

$$
\int_{m}^{\infty} \frac{1}{x^{2}} d x>\frac{1}{(m+1)^{2}}+\frac{1}{(m+2)^{2}}+\frac{1}{(m+3)^{2}}+\cdots
$$

So for each m, we can get an upper bound on

$$
\begin{equation*}
1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+ \tag{2}
\end{equation*}
$$

as $1+\frac{1}{4}+\frac{1}{9}+\cdots \frac{1}{m^{2}}+\int_{m}^{\infty} \frac{1}{x^{2}} d x$.
The first of these term is finite; find it with a calculator. On the other hand

$$
\int_{m}^{\infty} \frac{1}{x^{2}} d x=\left.\frac{-1}{x}\right|_{m} ^{\infty}=\left.\lim _{b \rightarrow \infty} \frac{-1}{x}\right|_{m} ^{b}=\lim _{b \rightarrow \infty}\left(\frac{-1}{b}-\frac{-1}{m}\right)=\frac{1}{m}
$$

For example, taking $m=2$, my estimate is $(1+1 / 4)+1 / 2=13 / 4$, for $m=3$ it is $(1+1 / 4+1 / 9)+1 / 3$ which is approximately 1.69 .

Now to estimate the volumes repeat this process but with $g(x)=\frac{1}{x^{3}}$ replacing $f(x)$. Remarkably, the exact value for $\Sigma_{n=1}^{\infty} \frac{1}{n^{2}}$ is $\frac{\pi^{2}}{6}$ while the exact value of $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is unknown:
See www.mat.bham.ac.uk/C.J.Sangwin/Teaching/pus/infsersup.pdf

