% file from FORM TEX

% written by David Radford 8/25/96, 8/29/96

\documentstyle[12pt]{article}

\pagestyle{empty} \textheight 7.5in

% macros etc

\newtheorem{Lemma}{Lemma}

\newcommand{\BF}[1]{\mbox{\boldmath $#1$}}

\newcommand{\pf}{\medskip\noindent{\sc Proof: }}

\newcommand{\qed}{$\Box$}

% this is file WIDEPAGE.STY to get a reasonable size page with 12

\marginparwidth 0pt \oddsidemargin  0pt \evensidemargin  0pt

\marginparsep 0pt \topmargin   0pt \textwidth   6.4 in \textheight

8.5 in

%

\begin{document}

\begin{center}

\bf  Math 300,  Spring  2003 \hfill Writing for Mathematics \hfill

Monday sections

\end{center}

\begin{center}

\bf {\huge The Mathematics for Essay 1}

\end{center}

\begin{center}

\rule[0in]{5.5in}{.1in}

\end{center}

\medskip

The purpose of these notes are two-fold: to explain the

mathematical background for Essay 1 and to show you some of the

flexibility of TeX.  Your own essay should not repeat the

arguments here but should have a more geometric flavor.  Write

about how one can physically place the blocks. You may assume

basic facts about geometric sums and series for Essay 1. Let $r$

be any real number and let $n$ be a non-negative integer. The sum

\begin{equation}\label{EqGeoSum}

1 + r + r^2 + \cdots + r^n

\end{equation}

is a {\em geometric sum} and the infinite series

\begin{equation}\label{EqGeoSeries}

1 + r + r^2 + \cdots + r^n + \cdots

\end{equation}

is a {\em geometric series}.

 

Suppose further that $r \neq 1$. Then the geometric sum

(\ref{EqGeoSum}) can be computed by the formula

$$

1 + r + r^2 + \cdots + r^n  = \frac{1 - r^{n+1}}{1 - r}.

$$

This fact, which you may assume, is easily proved proved by

mathematical induction.

 

Now suppose that  $|r| < 1$. Then $\lim_{n \longrightarrow

\infty}r^n = 0$ which means the geometric series

(\ref{EqGeoSeries}) converges to $\displaystyle{\frac{1}{1 - r}}$

by the preceding equation. We write

\begin{equation}\label{EqGeomSeriesSum}

1 + r + r^2 + \cdots + r^n + \cdots = \frac{1}{1 - r}

\end{equation}

to indicate that the series converges and to designate the limit

of the sequence of partial sums.

 

Your essay will involve the geometric series

\begin{equation}\label{EqOneHalf}

1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^n} + \cdots .

\end{equation}

Since $\displaystyle{|\frac{1}{2}| < 1}$, it follows by

(\ref{EqGeomSeriesSum}) that (\ref{EqOneHalf}) converges and

$\displaystyle{ 1 + \frac{1}{2} + \frac{1}{4} + \cdots +

\frac{1}{2^n} + \cdots = 2. }$ The DeLux blocks are cubes with

side lengths $\displaystyle{ 1, \quad \frac{1}{2}, \quad

\frac{1}{3}, \quad \frac{1}{5}, \quad \ldots }$ Your essay

involves analyzing the sum of their side lengths

$$

1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}+ \frac{1}{5}+

\frac{1}{6}+ \frac{1}{7}+ \frac{1}{8}  + \frac{1}{9} + \cdots +

\frac{1}{16}+ \cdots .

$$

The preceding series is called the {\em harmonic series}. Think of

the terms of the geometric series (\ref{EqOneHalf}) as markers for

grouping terms of the harmonic series as follows:

\begin{equation}\label{EqHarmonic}

{\BF 1} + \frac{\BF 1}{\BF 2} + (\frac{1}{3} + \frac{\BF 1}{\BF

4}) + (\frac{1}{5}+ \frac{1}{6}+ \frac{1}{7}+ \frac{\BF 1}{\BF 8})

+ (\frac{1}{9} + \cdots +  \frac{\BF 1}{\BF 16}) + \cdots .

\end{equation}

We will find an overestimate and an underestimate for the sum of

the terms in each of the parenthesized groups. You will see a

pattern emerging in our calculations:

$$

1 = \frac{1}{2} + \frac{1}{2} > \frac{1}{3} + \frac{1}{4} >

\frac{1}{4} + \frac{1}{4} = \frac{1}{2},

$$

$$

1 = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} >

\frac{1}{5} + \frac{1}{6}+ \frac{1}{7}+ \frac{1}{8} > \frac{1}{8}

+ \frac{1}{8} + \frac{1}{8} + \frac{1}{8}  = \frac{1}{2},

$$

$$

1 = \frac{1}{8} + \cdots + \frac{1}{8}  = 8(\frac{1}{8}) >

\frac{1}{9} + \cdots +  \frac{1}{16} > \frac{1}{16} + \cdots +

\frac{1}{16} = 8(\frac{1}{16}) =  \frac{1}{2},

$$

$$

\vdots

$$

Using (\ref{EqHarmonic}) and our underestimates, we see that

\begin{eqnarray*}

\lefteqn{1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}+ \frac{1}{5}+ \frac{1}{6}+ \frac{1}{7}+ \frac{1}{8} + \frac{1}{8} + \frac{1}{9} + \cdots +  \frac{1}{16}+ \cdots} \\

& = & 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4})+ (\frac{1}{5}+ \frac{1}{6}+ \frac{1}{7}+ \frac{1}{8}) + (\frac{1}{9} + \cdots +  \frac{1}{16}) + \cdots \\

& > & 1 + \frac{1}{2} + \frac{1}{2} +\frac{1}{2} +\frac{1}{2} +

\cdots  .

\end{eqnarray*}

Thus the partial sums of the harmonic series grow without bound

which is expressed by

$$

1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}+ \frac{1}{5}+ \cdots =

\infty.

$$

 

 

Below is a formal proof of the the fact that the sums of terms in

parenthesized groupings lie between $\displaystyle{\frac{1}{2}}$

and $1$. You should {\em not} include the proof in your essay; the

mathematics of your essay is to be treated informally. Observe

that the terms of a parenthesized group are given by

$\displaystyle{\frac{1}{2^n+1}, \ldots, \frac{1}{2^{n+1}}}$ for

some $n \geq 1$.

\begin{Lemma}\label{MemGroupSums}

Let $n$ be a positive integer. Then $\displaystyle{ \frac{1}{2} <

\frac{1}{2^n + 1} + \cdots + \frac{1}{2^{n+1}} < 1. }$

\end{Lemma}

 

\pf Since $2^{n+1} = 2^n + 2^n$ the sum in the statement of the

lemma has $2^n$ terms. Each term has the form

$\displaystyle{\frac{1}{2^n + \ell}}$ for some $1 \leq \ell \leq

2^n$ and thus  satisfies

$$

\frac{1}{2^{n+1}} \leq \frac{1}{2^n + \ell} \leq \frac{1}{2^n}.

$$

At least one of the terms is larger than

$\displaystyle{\frac{1}{2}}$ and one at least one is smaller then

$1$. Therefore

$$

\frac{1}{2} = 2^n(\frac{1}{2^{n+1}}) <  \frac{1}{2^n + 1} + \cdots

+ \frac{1}{2^{n+1}} < 2^n(\frac{1}{2^n}) = 1.

$$

\qed \vfill

 

adapted from DER by JTB 1/24/03

\end{document}