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Abstract. We expound modern rigorous arguments given by Apostol and

Spivak for the equality of the proportionality constant πa and πc in the for-

mulas A = πar2 and C = 2πcr for the area and circumference of a circle.
These proofs are deduced using the definition of area and arc length via inte-

grals and require the development of trigonometric functions on the real line.

We also point to the recent easily available work of David Weisbart [Wei20]
who obtains the same identity more in the style of Archimedes, while avoiding

the use of trigonomety.

For a circle C with radius r call the ratio of the area of a circle to r2 πa and the
ratio of the circumference of C to r 2πc. Archimedes argues:

Proposition 1. The area of any circle is equal to a right-angled
triangle in which one of the sides about the right angle is equal to
the radius, and the other to the circumference, of the circle.

Archimedes, Measurement of the circle [Arc97b, Arc97a]

Translating1 to modern language with numbers rather than merely proportions,
this is an assertion πa = πc. He assumes a circle can be deformed to a straight line
of the same length by rolling a cylinder along a plane. In [Arc97b] he computes πc to
be between 3 10

71 and 3 1
7 . 19th century analysis demanded more rigorous arguments

for the equality of πa and πc. The background for this issue is the dissatisfaction
with Euclid’s general notion of magnitude resulting in the demand by e.g. Hilbert
[Gio21], that separate geometrical notions of length and area must be developed.
In particular, the relation of length of curves to the length of straight line segments
must be clarified.

Textbooks such as [Apo67] and [Spi80] describe a rigorous approach to these
results that maintain connection with the original geometry rather than proceeding
by less-motivated power series for the trigonometric functions. One of their goals
is to connect the definition of area under a curve as a definite integral with its geo-
metric background. They use the standard definition in calculus of arc length of an
arbitrary rectifiable2 curve and calculate the circumference of a circle. In contrast,
[Wei20] looks only at the case of a circle but objects that, a priori, Archimedes
construction depends on both the shape of the base polygon and the method of re-
finement. After proving the result in [Wei20, §2] for 2mn-gons for fixed n, the
remainder of the argument establishes in his §4 the equality for polygons whose
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1See Footnote 2 of [Arc97b].
2The notion of rectifiable was prefigured by Archimedes and is a necessary and sufficient

condition for a curve to have a length.
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vertices form a ‘rational circuit.’ For details see [Wei20]; this generalization is not
used here.

Unfortunately, I am unable to find the calculation of the circumference via arc
length in Apostol and it is relegated to problems in Spivak. We present here
an outline, to be read in detail only with Spivak in hand3, showing there is no
circularity4 in the argument identifying πa with πc. A crucial point is the use of
the fundamental theorem of calculus.

Of course, this is not intended to be the Euclidean or even the Archimedean argu-
ment. The trigonometric functions are defined on the entire real line (by periodic-
ity), not just for angles less than two right angles. Numbers rather than proportions
are used to compare magnitudes.

In particular, the arguments of Apostol and Spivak, like most other modern
treatments, require the use of trigonometric functions defined on the real line.
However, [Wei20] establishes the result using modern notions of convergence but
avoiding trigonometric functions.

(1) Using the definition of area under a curve given by a function f between a

and b as the value of the definite integral of f from a to b,
∫ 1

−1
√

(1−x2)dx
is the area of under the upper half of the circle so the area of the unit circle

is 2
∫ 1

−1
√

(1− x2)dx.
√

represents the positive square root [Spi80, p 12].

(2) We define πa to be 2
∫ 1

−1
√

(1 − x2)dx. We will justify this in terms of
historical usage by proving that twice πa is the circumference of the unit
circle. This uses two lines of argument. A third line identifies the sin and
cos defined here with those of right angle triangle trigonometry.
(A) trigonometric functions

(i) Define [Spi80, 289] the function

A(x) =
x
√

(1− x2)

2
+

∫ 1

x

(1− x2)dx

gives the area in the region bounded by the horizontal axis, the
unit circle and the line [(0, 0), (x,

√
(1− x2)]. Note this function

is continuous, decreasing, and onto the interval [−1, 1].
(ii) For 0 6 x 6 πa define cosx = y where y is the unique number

in [−1, 1] such that A(y) = x/2. Thus, cos is a function5 with
domain [0, πa] and sinx is

√
(1 − (cosx)2) on that interval. In

particular6, A(−1) = π
2 implies cosπ = −1 and A(1) = 0 implies

cos(0) = 1.
(iii) [Spi80, 291-292] show sin′ x = cosx and cos′ x = − sinx on (0, π).

Spivak points out that this determination of the derivative of sin
using the fundamental theorem of calculus avoids well-known
difficulties with evaluating limh→0

sinh
h = 1.

3Page numbers are different in later editions; the relevant section is entitled: the trigonometric
functions.

4The paragraph on [Spi80, p 288] just before ‘We can therefore define’, is not a definition but
a description of the groundwork for the definition. That groundwork is described below.

5There is a tacit appeal to the intermediate value to show cos is defined everywhere on [−1, 1].
6The evaluation A at ±1 follows from noticing the first term in A(±1) is zero and the second

is either 0 or π/2.
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(iv) Note for use below that on the top half of page 291 Spivak cal-

culates that cos(π
a

2 ) = 0, and sin(π
a

2 ) = 1.
(B) Arc Length and radian measure

(i) If f and f ′ are continuous on [a, b], define the arc length of f on
[a, b]:

Lf,[a,b] =

∫ b

a

√
(1 + f ′(x)2)) dx .

(ii) Calculate the arc length of
√

(1 − x2) from −1 to 1, which is
denoted as 2πc.

(iii) This is done in https://www.math.toronto.edu/jko/MAT186_

week_12.pdf which we copy as Problem 1.0.1. Read the π in
the screenshot on the next page as πa.

(iv) There are several fine points obscured in the screenshot. This
is an improper integral of the second kind (cf. [Spi80, Apo67]).
But [Spi80, Theorem 3 p. 294] establishes that the integrand7 is
arcsin′ on the open interval (−1, 1) and it is continuous on [−1, 1]

with arcsin(−1) = −π
a

2 and arcsin(−1) = πa

2 so the integral
converges as required and πa = πc.

(C) Now we justify radian measure as a measure of angles and conclude
the agreement of Spivak’s trig functions with those of right triangle
geometry.

(i) Namely, using the definition of sin, cos above, for x ∈ [0, 1] the
arc length of segment of the circle in the boundary of the re-
gion bounded by the horizontal axis, the unit circle and the
line [(0, 0), (cosx, sinx)] is x. For this, apply the same argu-
ment as in Problem 1.0.1 (below), but now integrating from
x to 1. We see the answer8 is arcsin 1 − arcsin(cosx). Now
from the addition properties of sinx proved in [Spi80, Theo-
rem 5], and the periodicity (and since cosx an even function)
built into defining the trigonometric functions on the entire line,
cos(x) = cos(−x) = sin(−x+ π

2 ). So

arcsin 1− arcsin(cosx)) =
π

2
− (arcsin(−x+

π

2
)) =

π

2
− (−x+

π

2
) = x

as required.
(ii) For angles less than two right angles, the functions sin and cos

agree with the same-named functions on right triangles defined
as ratios. That is, an angle in a right triangle with radian mea-
sure x has base cosx and height sinx (as defined by Spivak);
since we are on a unit circle, that agrees with the traditional
definition.

7The notation gets a bit messy here. In the first line of the proof f−1 is the inverse function

f = sin as defined near the bottom of page 293. With that notation the passage from the first
line of the proof to second is the general formula for the derivative of an inverse function [Spi80,

Theorem 12.5 p 222].
8In the traditional definition it immediate that arcsin(cosx) = π

2
− x, but we need to prove it

for this definition of the trig functions.

https://www.math.toronto.edu/jko/MAT186_week_12.pdf
https://www.math.toronto.edu/jko/MAT186_week_12.pdf


4 JOHN T. BALDWIN UNIVERSITY OF ILLINOIS AT CHICAGO

[Wei20] provides formulas for the area and perimeter of inscribed regular n-gons
and gives a geometrical proof that as n increases they converge to the same value.

This note was stimulated by my description of a first order axiomatization of the
Euclidean geometry along with π [Bal19] and [Bal18, Chapter 10]. The consistency
of those axioms depends on arguments such as those described in this note.

Problem 1.0.1. Calculate the arc length of
√

(1 − x2) from −1 to 1, which is
denoted as 2πc.

2. Weisbart

Here is a quick sketch of Weisbart’s proof that approximations of πa and πc by
regular 2mn-gons yield the same result. The major innovation for this argument is
the use of Heron’s formula in Step 2.0.2.2.a) below. Most of his paper (after §2)
is devoted to a more general argument showing the result for arbitrary rectilinear
approximations.

Notation 2.0.1. (1) polygons
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(a) g(m,n) and G(m,n) are inscribed and circumscribed 2mn-gons.
(b) `n(m) and Ln(m) are side lengths of the respective polygons.
(c) pn(m) = 2mn`n(m) and Pn(m) = 2mnLn(m) are the perimeters of the

respective polygons
(d) an(m) and An(m) are the areas of the respective polygons.

(2) triangles
(a) P and Q are adjacent vertices of g(m,n) and P and Q are adjacent

vertices of G(m,n).

(b) αn(m) and αn(m) are the areas of the respective triangles POQ and
AOB.

Fact 2.0.2. (1) He first argues in Proposition 3 that for each n each of the
limits as m→∞ for pn, Pn, an, An exists.

(2) He then argues in the first part of Proposition 4 on page 4, that the up-
per and lower area approximations converge to 1/2 the relevant perimeter
approximation.
(a) an(m) = 2mnαn(m) and An(m) = 2mnαn(m).

(b) For fixed m, the perimeter of POQ is 2 + `n so the semiperimeter of
POQ is 1 + `n

2 and by Heron’s formula

A(POQ) =
√

[(1 +
`n
2

)(
`n
2

)2)(1− `n
2

)).

(c) So in general αn(m) = 2mn `n(m)
2

√
)1− `n

2 )4) which tends to pn
2 .

(d) On a unit circle, αn(m) =  Ln(m)
2 , so An(m) = 2mαn(m) = 2m−1nLn(m)

which tends to Pn

2 .
(3) It remains to show for each n that Pn = pn; he argues this on page 5-6; a

slightly shorter version appears at [Smo22, 138-139].
.
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