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Abstract

Three major axiom systems for organizing plane geometry are used in various GeT/high school text-
books. In the light of SLO4, we describe the distinct challenges facing Euclid, Hilbert, and Birkhoff
(SMSG: School Mathematics Study Group) in this project. Building on a workshop we gave to in-service
high school teachers a logician and a high school teacher describe an amalgam of the Euclid/Hilbert system
designed to avoid the technical complexities of Hilbert’s system while preserving his foundation for both
analytic and synthetic geometry. The supplement contains further proofs and student activities involving
explorations and technology.

1 Introduction
This chapter is aimed primarily at (future) instructors of college courses in geometry for teachers. We
address the roles of the college instructor, college students, who, primarily, are future high school teach-
ers, and high school students. We discuss the role of axioms in mathematics and use a variant on Eu-
clid’s axioms to show that verifying an easily constructed algorithm for splitting a line into equal pieces
requires all the Euclidean axioms. To emphasize that axiom systems are designed by individuals to clar-
ify the reasons for certain mathematical truths, and to provide background (alternative texts) for instructors
(Methodology 3.9), we describe and contrast the challenges faced by Euclid, Hilbert, Birkhoff, and our
own challenge in amalgamating them for a 21st century audience. The chapter is built on a course the two
authors gave for in-service high school teachers in Fall 2012, clarifying its aims and amplifying the ma-
terial. We label our comments on the underlying mathematical development rather loosely as motivation,
methodology, extension, or pedagogy. Hilbert’s geometry book (based on years of courses, some to high
school teachers) stimulated such notions of modern logic as consistency, truth in a model, independence,
and completeness that are crucial in discussing ‘models and axioms’ in a college geometry course. The
supplement contains both i) deeper study of logic and geometry and ii) many activities and exercises from
the original course that are ill-suited for a commentary on learning standards. Our extensive bibliography
aims to afford instructors opportunities to deepen their knowledge of the material. The supplement is at
https://homepages.math.uic.edu/˜jbaldwin/CTTIgeometry/suppfinnolab.pdf.

We build on the superb narrative for SLO4 and assume it below. We stress that axioms are intended to
organize the study of an area of mathematics by identifying the fundamental assumptions needed to establish
the results in that area and that different choices of fundamental notions (undefined terms) and axioms can
provide different explanations.

We agree with the advice in the narrative that the college instructor should scale up from the earlier levels
of the Van Hiele hierarchy. We focus here on the development for college students of levels 3 and 4. Level
3 Deduction (Informal Deduction1): ‘At this level students can give deductive geometric proofs. They are
able to differentiate between necessary and sufficient conditions. They identify which properties are implied
by others. They understand the role of definitions, theorems, axioms and proofs.’ Level 4 Rigor: ‘At this
level students understand the way how mathematical systems are established. They are able to use all types
of proofs. They comprehend Euclidean and non-Euclidean geometry. They are able to describe the effect of
adding or removing an axiom on a given geometric system.’2. The common core demands level 3 of high

1Van Hiele says formal but means what we call informal.
2This statement is from the easily accessible https://physics.mff.cuni.cz/wds/proc/pdf12/WDS12_112_m8_

Vojkuvkova.pdf the five levels are: 0 Visualization, 1 Analysis, 2 Abstraction, 3 Deduction, 4 Rigor. Many variants appear online;
[Cro87] differs slightly on Level 4 and gives more background.
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school students but not level 43 As noted in SLO2, ‘there may be students in the college course who have
not fully attained level 3, while there are a number of high school students that operate comfortably at level
4 and some who appreciate non-Euclidean geometries.’

The SLO4 defines a theorem as ‘a statement that can be proved from the axioms without regard to in-
terpretation’ (i.e. holds in every interpretation that satisfy the axioms (i.e. every model). More useful for
students is ‘can be deduced from the axioms by the rules of logic’. The equivalence of these two charac-
terizations of theorem is precisely Gödel’s completeness theorem for first order logic. In particular Gödel’s
theorem makes precise the meaning of consistent. In first order logic, a theory T is consistent if it satisfies
one of the two equivalent conditions: i) One cannot derive a contradiction from T , ii) T has a model. We
will examine such rules in Extension 5.0.5 of the supplement. The crucial point is that Books I-IV of Eu-
clid and axiom groups I-IV of Hilbert are first order; Birkhoff is not. First order logic allows quantification
only over individuals, while second order logic allows quantifications over sets and functions. This vastly
greater strength4 is embodied in Quine’s dicta that ‘second order logic is set theory in sheep’s clothing’. The
complexity of Hilbert continuity axioms (in particular, Dedekind completeness) is discussed in §10 of the
supplement. Understanding them seems to require an extension of the Van Hiele hierarchy.

Motivation 1.1 (SLO 1, 3: Why axiomatics?). A fundamental goal of K-12 education is to inculcate the
ability to make and understand rational arguments. For over 2000 years Euclid’s Elements performed this
task more than any other single source. One of the standard goals for U.S. high school geometry is Common
Core Standard 3 for mathematical practice: Construct viable arguments and critique the reasoning of
others. A successful argument requires a clear statement of subject matter. The notion that reasoning
skills learned in geometry transfer to e.g. political discourse raises many distinct questions. However,
[IA17, CS20] find studying mathematics develops general thinking skills. Our task here is not to defend
that proposition. Rather, given that it is embedded in mathematics standards, the goal here is to provide
a model of reasoning in a mathematical context which is accessible to high school students – geometry is
everywhere. Moreover, via Euclid et. al., geometry is precise.

Synthetic geometry produces results from explicit geometric assumptions. In contrast, analytic geom-
etry assumes the coordinization of the geometry by a field. If the field is required to be the real field the
hypotheses are set theoretic rather than only about the geometric objects of Euclid.

We contrast three modes of persuasion: argument: reasoned persuasion in any subject: mathematics, law,
politics, movies, informal proof: a typical argument in mathematics, the rules of inference are implicit and
the global assumptions unstated although nominally reducible to formal set theory (e.g. Zermelo-Frankel
with the axiom of choice), and formal proof: in a logic with strict rules for construction of sentences and
deductions. This chapter concerns informal proof but clarifies the relation of proof in high school and college
with formal proof, which in its most extreme form must be machine implementable [Hal08, FGH+24].

Methodology 1.2 (Axiom Systems). The introduction to [Hil62], published in 1899, heralds a new age in
the foundations of mathematics.

The following investigation is a new attempt to choose for geometry a simple and complete set
of independent5 axioms and to deduce from these the most important geometrical theorems in
such a manner as to bring out as clearly as possible the significance of the different groups of
axioms and the scope of the conclusions to be derived from the individual axioms.

3‘During high school, students begin to formalize their geometry experiences from elementary and middle school, using more
precise definitions and developing careful proofs. Later in college some students develop Euclidean and other geometries carefully
from a small set of axioms.https://www.thecorestandards.org/Math/Content/HSG/

4See [Vää10, §5.3] for a concrete expression of the continuum hypothesis in second order logic with empty vocabulary.
5[Hil62] checks the independence of the groups of axioms; however [Wyl44] showed dependence within the order-group.
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The aim is to determine fundamental, ‘simple and complete’ reasons for ‘important geometrical theo-
rems’. Hilbert’s axioms did not enter the high school curriculum because of the complexity of their use.
This complexity arises from the difficult construction of the linear ordering of a line from the abstract be-
tweenness axioms and the tedious process of transcribing such important notions as circle (Hilbert omitted
circles.) into his choice of basic concepts. By merging Hilbert’s framework with Euclid’s, we present a more
accessible approach which embodies Hilbert’s view what geometry is.

Old View: Until the 19th century it was thought that geometry demonstrated truths from unassailable
premises. These premises were Euclid’s axioms (common notions) and postulates (geometric assumptions).

New View: Geometry deduces conclusion from a specific set of geometric hypotheses. These hypotheses
might be Euclidean, spherical, hyperbolic, etc. Whether these geometrical hypotheses are ”true” is not a
mathematical question. As the epigram of [HT20] puts it:

Geometry doesn’t contain the truth about how space is. Geometry is how you view space. Take
charge of it – it’s yours. Understand how you see things and how you imagine things. Geometry
can say something about you and your universe. – David W. Henderson

But this new view leaves open the issue of how we are to understand these ‘not known to be true’
geometric hypotheses. What are the fundamental notions? What is true about them? What do they imply?

Motivation 1.3 (SLO1 vs SLO4). By contrasting axioms and models, SLO4 focuses on the roles of axiom
systems for organizing a topic rather than particular proofs as in SLO1 and [SBM19]. We consider several
alternative axiomatizations that each yield the propositions of Euclid. There is not a difference in most cases
between the proofs of a particular theorem; the difference is in what statements are theorems rather than
axioms, or provable or not. We examine how the different problems that motivated each author affects the
actual development of the geometry and accessibility to students. Since the non-Euclidean geometries are
rarely studied axiomatically, we concentrate on subsystems and differing approaches, specifically those of
Euclid, Hilbert, and Birkhoff (SMSG) to the Euclidean case.

Methodology 1.4 (SLO1: Criteria for Choosing Axioms). Natural criteria include that axioms should be
intuitive and parsimonious. By intuitive, we mean the axioms can be easily illustrated for the students in-
volved. An axiom system is independent if no axiom can be deduced from the others. Parsimony can be
violated in two ways: i) including an axiom which is not needed for the intended collection of results or
ii) failing to be independent. Mathematicians were convinced that the parallel postulate was not fundamen-
tal but should be provable from Euclid’s other postulates, it took two thousand years to show the parallel
postulate is independent.

A third natural criteria is that the axioms should be, as Hilbert said in 1.2, complete. But completeness
turns out to be a rather complex notion that we will explore in Section 10. For now, we will say an axiom
system is descriptively complete6 [Det14] if it implies all the propositions it was designed to axiomatize.

2 Interpretations, Models, and Axioms

Pedagogy 2.1 (SLO1: Synthetic and Analytic proof). Narrative SLO2 prescribes ‘understanding different
types of proof such as synthetic (from axioms), analytic (using coordinates), and proofs using transforma-
tions or symmetries.’ This distinction between synthetic and analytic illustrates the difference between proof
from axioms in the language of geometry and proof about interpretations (Example 2.10). A synthetic proof

6More strongly it is deductively negation complete if every ‘relevant sentence’ is proved or refuted. See Definition 10.2.2
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is an informal proof (Motivation 1.1) organized as sequence of statements such that each statement is ei-
ther an axiom, hypothesis, previously proved theorem, or follows from the earlier statements by a (perhaps
vague) rule of inference. We call synthetic proof as taught in high school, ‘semi-formal’, reserving ‘formal’
for the stricter7 notion of Methodology 1.1. An analytic proof is an algebraic proof about the coordinatized
plane, which almost always uses symbols. As such, it is a proof about an interpretation of the axioms.

We contrast in Example 2.4 the axiomatization of linear orders with the mathematical definition of a
linear order thusly:

Definition 2.2 (Linear Order). A set X is linearly ordered by a relation < if < is asymmetric (x < y implies
y ≮ x), irreflexive (x ≮ x), transitive (x < y and y < z implies x < z), and satisfies trichotomy (for any
x, y: x < y or x = y or y < x); it is dense if between any two points there is another.

Notation 2.3. [Syntax/semantics/interpretation] The crucial divide between axioms and models is between
syntax and semantics. Axioms are syntactic objects, sentences (English or symbolic). The sentences are
in a regimented language with a fixed vocabulary of basic terms. Interpretations (models/structures) are
semantic, mathematical objects. There is a clear method (either informally or by a technical definition) to
determine when a particular sentence is true in a particular structure.

More precisely, an interpretation or structure for a vocabulary (the basic terms) consists of a set (called
e.g. world, domain, universe) and a meaning for each basic term on that domain. An interpretation is a
model of a set of axioms if it satisfies each axiom.

Example 2.4 (The theory of linear order). Fix a vocabulary with a single binary relation symbol R<. The
formal axioms of linear order are obtained by turning each item in Definition 2.2 into a formal sentence:
e.g. asymmetry (∀x∀y)x < y →6= (y < x).

A model of the theory of linear order is a pair (X,<) with < a binary relation on X such that each of
the formal statements holds when R< is interpreted as <.

The fundamental distinction between R< (a formal symbol) and < (a binary relation) can be discerned
from the particular context and so we follow below the common practice of using the same sign < for both
notions.

The following basic mathematical structures (possible interpretations) should be known, but perhaps not
so precisely. A structure for the vocabulary of ordered fields (e.g. ‘the rationals’) is a set with a list of
interpretations of basic terms. The ordered field of rational numbers 〈Q,+,×,−,−1, 0, 1,=, <〉 consists of
the set of fractions with the specified constants, operations, and relations listed. The word field indicates that
both addition and multiplication are groups (satisfy associativity, commutativity with identities 0, 1 and in-
verses (unary functions−,−1) and that multiplication distributes over addition. ‘Ordered’ prescribes a linear
order relation. Here is a particular interpretation of the vocabulary of fields (addition, multiplication, addi-
tive and multiplicative inverse and identities 0, 1, equal, less than) on a particular set, the rational numbers
Q. just using the usual meanings of the symbols. Since all the field axioms are satisfied8, this interpretation
is a model of the theory of fields. Another model is the real field. But it, unlike the rationals, also satisfies
the least upper bound principle, which cannot be expressed in the first order theory of fields. One point of
these notes is that the least upper bound principle is largely irrelevant to high school geometry.

7Increasingly the term is used only for computer proof (e.g.https://imsarchives.nus.edu.sg/files/
CLThomasHales25Nov2009.pdf.

8Since addition does not distribute over multiplication, if we had perversely interpreted addition as × and multiplication as +, we
would still have an interpretation; but not a model. Note −1 denotes the multiplicative inverse.
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Definition 2.5. The basic terms of an (incidence) geometry are points (P ), lines (L) and a binary relation
I between points and lines, ‘A lies on `’. The interpretation of the statement, ‘the point A is on the line `’ is
Π(F ) |= I(A, `).

We need an unfamiliar symbol I because unlike fields, where we routinely work in the model, synthetic
proof can be done in English with symbols only naming particular points and lines.

Definition 2.6. For any field F , the ‘coordinate plane’ over F is an interpretation for the incidence geometry
vocabulary. By the coordinate plane Π(F ) over a field F we mean the interpretation 〈P,L, I〉 whose points
are pairs A = (u, v) in F × F and whose lines are the solutions of linear equations over F . That is,
A = (u, v) is on the line ` determined by y = mx+ b, if v = mu+ b. We say Π(F ) satisfies the statement
‘A lies on `’ or formally I(A, `).

In Theorem 7.13 we show the correspondence is invertible: the field is found in the geometry.

Exercise 2.7. Here is a very different interpretation for the vocabulary of incidence geometries. Keep
P = F × F but change L to the set of vertical lines: `a for a ∈ F . Then, I is defined by: I(〈x, y〉, `a) if
and only if x = a. Problem: Construct a plane with only horizontal lines.

Pedagogy 2.8 (The new view and student understanding). We now consider axioms for projective planes,
since they are much simpler than those for Euclidean geometry. [Har99] describes the distinction between
the intuitive axiomatic (Greek) and structural conception (Hilbert) of axioms in [Har99]. Harel highlights
that distinction as obstructing students understanding proofs and in particular to their understanding such
exercises as 2.10. How can a plane be finite?

Definition 2.9 (Projective Plane). An incidence geometry is a projective plane if it satisfies the axioms: (P1)
Any two distinct points lie on a unique line. (P2) Any two distinct lines meet in a unique point. (P3) There
exist at least four points of which no three are collinear (i.e., are on the same line).

Exercise 2.10.

1. Fano Plane Draw a picture of the projective plane with 3 points on each line. (Hint: it has 7 points
and 7 lines.)

2. Prove that in a projective plane there are four lines with no three sharing a common point.

3. Suppose (P,L, I) is a projective plane and there are n points on a given line `. Prove each line has n
points and there are n2 − n+ 1 points in the plane9.

Items 2) and 3) have very different nature; the first is a theorem of projective geometry; it is expressed
in the vocabulary of geometry. The second is a theorem about projective geometry. There are no numbers
in projective geometry, which has only points, lines and incidence 2.5; the result describes the models of
projective geometry using concepts it cannot express.

Deductions from Euclid’s five axioms include some actual gaps and others that are questionable. Many
of these gaps are more apparent than real; much of the difficulty came from later mathematicians ignoring
the rigorous role diagrams played in Euclidean proof (Pedagogy 5.0.1). For example, Hilbert even postulates
that if B lies between A and C then B lies between C and A. For high school this is unnecessary pedantry.

In the remainder of this section we describe the different challenges that motivated the organization of
geometry by several authors. To situate Birkhoff’s system with the others we need some definitions.

9The first author took a college course in projective geometry. His future wife, who had no college mathematics solved this problem.
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Definition 2.11. 1. A metric on a set X is a function d from X × X into the positive elements of an
ordered group (field for us) such that d(x, x) = 0, x 6= y → d(x, y) > 0, d(x, y) = d(y, x), and
d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).

2. If the vocabulary of an ordered field F is either included in the basic vocabulary (Birkhoff) or definable
(Hilbert) the ruler postulate asserts: for each line ` in the plane there is a bijection f` from ` to F so
that for A,B ∈ `, d(A,B) = |f`(A)− f`(B)|.

3. the <-ruler postulate (Birkhoff/SMSG) takes F to be the real numbers <.

Motivation 2.12 (SLO2, 7: Euclid’s Challenge). Euclid aimed to provide a unified foundation for earlier
geometry, specifically the side-splitter theorem of Thales around 600 BCE (Euclid VI.2: A line parallel to
the base and intersecting both sides of a triangle creates two similar triangles) and the Pythagorean theorem.
The obstacle is incommensurability10 in each case. He has five postulates. Using a theory of ‘equal (area)
figures’ (but now called equi-complementability or equal content) of area, Euclid establishes the Pythagorean
theorem as the culmination of Book I. By appealing to the Axiom of Archimedes, he establishes a theory of
proportion that first yields: VI.1 the area of a triangle is proportional to its base and altitude and VI.2 the
side-splitter theorem. While Eudoxus’ method of exhaustion motivated Dedekind’s construction [Ded63],
the existence of continuum11 many (2ℵ0 ) real numbers was completely foreign to Euclid.

Motivation 2.13 (Hilbert’s Challenge). 19th century mathematicians such as Cantor, Dedekind, and Frege
revolutionized the foundations of mathematics by making the natural numbers rather than Euclidean geome-
try fundamental. Hilbert aimed for an independent development of geometry. He needed to develop notions
of distance and proportion from geometric notions of point, line, between, and congruence (of angles or seg-
ments). He had to meet the new higher standards of rigor, in particular, avoiding any reliance on diagrams
(Extension 5.0.5). He deduced VI.2, side-splitter,from a geometric foundation of the theory of proportion
and then VI.1 from a new theory of ‘measured area’. He proved his four axiom groups are independent,
although there are dependencies within some groups. Definition 2.6 exhibits a model of the ruler postulate
where F = Q. § 7 shows there is a such a field for any geometry satisfying I-IV.

Methodology 2.14 (SLO5: Congruence vs Distance). This is partly a story of the chicken (congruence)
and the egg (distance). A fundamental distinction between Hilbert and Birkhoff is that Hilbert takes the
congruence relation as fundamental and proves that one can define a metric (with values in a field) and
so the ruler postulate is satisfied. Birkhoff (and SMSG [SMS95] [Ced01, Appendix]) assume the <-ruler
postulate. A difficulty of these axioms for a high school course is that limits, which Hilbert has shown are
irrelevant to the geometry of lines, are used implicitly, while basic observations are replaced by long proofs.
E.g., common notion 3 (subtraction of line segments) is ‘reduced’ in some texts to using the ruler postulate
twice and assuming the student knows the laws of algebra well. In this chapter we take congruence of line
segments and angles as fundamental, not some measure.

Motivation 2.15 (Birkhoff’s Challenge). Birkhoff differs from Hilbert by ‘axiomatizing’ analytic geometry
rather than developing it from purely geometric hypotheses. He confronts the difficulty of using technical
axioms about Hilbert’s betweenness relation to the only slightly more intuitive concept of the real linear
order. [Rai05] begins his discussion of geometry teaching before the ‘new math’ days (1960’s) in US with
the side-splitter theorem (2.12). Many texts and an influential mathematics educator [Rai05, p 9] propagated
an incorrect proof of this theorem by implicitly assuming all line segments were commensurable. Birkhoff

10Two line segments are commensurable if for some integers m and n, m copies of one are the same length as n copies of other.
11https://en.wikipedia.org/wiki/Cardinal_number for background.
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[Bir32, BB59] addressed this issue with 4 postulates: the (<)-ruler postulate (making the implicit assumption
explicit) and an analogous <-protractor postulate, two points determine a line, and Postulate IV, a masterful
amalgamation of SAS and the converse to side-splitter12 (8.5) into a single statement of analytic geometry.
From this he easily deduces the existence and uniqueness of parallels [Bir32, Theorem IX]. He writes [Bir32,
p 344] ‘On the basis of the preceding theorems, Euclidean arc length can be defined in the usual manner.’
The existence of the real numbers and thus the <-ruler postulate can only be stated and proved in second
order logic/set theory so do not provide a geometric foundation.

Pedagogy 2.16 (Our Challenge). A prime objection to Hilbert’s axioms is that they are too abstract for high
school. Our aim is to amalgamate the axioms of Hilbert and Euclid to provide a more accessible account
of Hilbert’s foundation of both synthetic and analytic geometry on purely geometric principles culminating
in a proof of VI.I and VI.2. We vary from Hilbert primarily in accepting Euclid’s careful use of diagrams
and taking as an axiom (Pedagogy 5.2.3) that each line has a dense linear order based on betweenness. We
expound Hilbert’s bi-interpretation of Euclidean geometry and ordered fields because it not only is the key
step in the bi-interpretation of hyperbolic and Euclidean geometry (Theorem 11.4) but because it provides a
synthetic basis for high school analytic geometry. For simplicity and succinctness, we axiomatize only plane
geometry.

Motivation 2.17. [Why not Birkhoff?] We began with Hilbert’s admonition to seek simple, explanatory
axioms. The ruler postulate is neither. It appeals to a ‘magical’ notion: ‘the real numbers’. Similarly,
assuming the side-splitter magically connects two radically different concepts of proportion (via fields or
similarity) that in fact are provably (in Hilbert’s system) equivalent. By magic, we mean that Hilbert’s
axioms identify the actual property that make the reals special, they are the largest Archimedean field. And
he has proved his geometry is coordinatized by a field. There is a reason he avoids circles. A rigorous
definition of angle measure involves the exponential and trigonometric functions, using either calculus or
infinite series. All this is buried by the protractor postulate. Of course, this background is obvious to
Birkhoff, one of the leading analysts of the 20th century. But it isn’t to a high school sophomore. Nor
even to a college student who hasn’t absorbed the least upper bound principle in Advanced Calculus. More
practically, assuming the <-ruler postulate kills almost all examples of axiom independence in this chapter.

3 Common Notions vs Postulates
We now discuss Euclid’s distinction between general and geometric premises and the 19th century quest for
an autonomous basis for geometry.

Methodology 3.1. [Common notions vs postulates] Euclid’s distinction between principles (common no-
tions) that are true everywhere in mathematics and those that are true only of a particular topic remains
important today. But it is answered in a different way. Euclid expounded only geometry and natural number
(positive integers) arithmetic. His common notions essentially describe the properties of equality and order
(among classes of ‘comparable objects’, i.e. magnitudes of various sorts). Length and area are incomparable
magnitudes for Euclid. In modern mathematics (almost) all topics can be studied on a common basis in set
theory.

Postulates describe the relations among the fundamental concepts of a particular subject. The best ex-
ample for over 2000 years were Euclid’s postulates for geometry. Nineteenth century geometers insisted

12[Moi90, §11.1-2] proves the forward direction of sidesplitter, (AAA) (If corresponding angles of a pair of triangle are congruent,
the sides are proportional) via an implicit appeal to Archimedes.
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that applicability of the common notions be explicitly based within geometry [Gio21]. Thus, the geometri-
cal consequences of the common notions must be derived from the postulates; this required some additions
(§5).

These are the common notions of Euclid. They apply equally well to geometry or numbers. Following
modern usage, we call Euclid’s postulates either ‘axiom’ and ‘postulate’.

Common notion 1. Things which equal the same thing also equal one another.
Common notion 2. If equals are added to equals, then the wholes are equal.
Common notion 3. If equals are subtracted from equals, then the remainders are equal.
Common notion 4. Things which coincide with one another equal one another.
Common notion 5. The whole is greater than the part.

Methodology 3.2 (SLO5,7: Common Notion 1 (CN1)). Euclid used ‘equal’ in two ways: to describe con-
gruence of segments/figures and to describe that figures have the same size (length, area, volume). While the
only numbers for Euclid were the positive integers > 1, he did study the comparison of what we now inter-
pret as lengths. Following Hilbert, in Section 7 we build an ‘algebra of segments’ (a semi-field) and explain
how to consider the segments as ‘numbers’ that can measure areas, a concept totally foreign to Euclid.

CN1 asserts that equality is transitive13. For various notions (e.g. congruence) we may need to make this
property (as well as symmetry) an explicit axiom. See Axiom 5.3.1.

Methodology 3.3 (SLO5,7: Common Notion 4). What Euclid means by coincide and equal is unclear
([Euc56, p 224, 248],5.3.22). We adopt the view that X coincides with Y means ‘one is mapped to the other
by a rigid motion’; we follow the usual interpretation that in this context Euclid’s equal means congruent.
So, Euclid CN4 asserts any figure is congruent with itself. That is one of Hilbert’s congruence axioms. We
discuss the property of symmetry of congruence in Motivation 5.3.5.

Methodology 3.4 (SLO 1, 5, 7, 8 Definitions). Euclid begins with a list of definitions. Some (e.g., ‘A
line is breadthless length’) are really just an indicative definition; it points to an intuition. These indicative
definitions become the basic terms (vocabulary) of Definition 2.3. Others (e.g., When a straight line standing
on a straight line makes the adjacent angles equal to one another, each of the equal angles is right.) are
stipulative definitions. They precisely describe a new concept in terms of previous definitions. The geometric
definitions in this chapter are stipulative.

Euclid and Hilbert take point, line (line segment for Euclid), incidence (a point is on a line), plane, and
congruence of segments (and angles) as the most basic concepts. They regard triangles and other polygons
as built from points and straight lines and facts about them follow from the axioms.

For Euclid, words in the proof refer to ideal geometric objects. But Hilbert’s attitude is different. These
basic concepts are named by words in the vocabulary. For him, the meaning of those words is given implicitly
by the axioms [Dem94]. Blumenthal [dav11] reported, ‘One must be able to say at all times–instead of
points, straight lines, and planes – tables, chairs, and beer mugs’.

We now consider the role of definition and a central example.

Activity 3.5. SLO5, CC Standard G-C0 1. Know precise definitions of angle, circle, perpendicular line,
parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and
distance around a circular arc.

13A relation R(x, y) is transitive if R(a, b) and R(b, c) implies R(a, c). ‘Descendent’ is transitive; ‘daughter of’ is not.
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2. Why is distance along a circular arc given as an undefined notion? Can we define the length (congru-
ence) of a circular arc in terms of the length (congruence of line segments)? Why is the length of the chord
a less good measure than the length of the arc?

As noted [Har00, p 114], congruence of arcs can be defined by rigid motions. But in general, the length
of an arc may not be the length of a straight line segment in a particular interpretation. E.g., when the
interpretation is the plane over a field that does not contain π, the arc-length of a semicircle of radius 1.
Specifically, F might be real algebraic numbers (i.e. the field of real solutions of polynomial equations in
one variable with rational coefficients) as it does not contain π. The circle of radius 1 about the origin is the
set of solutions of x2 + y2 = 1.

We give a stipulative definition of angle, one of the indicative definitions in Euclid.

Definition 3.6. An angle ∠ABC is a pair of distinct non-collinear rays from a point B. The rays BA
(points C the line BA such that ¬B(A,B,C)) and BC split the plane into two connected regions. The
region such that any two points are connected by a segment entirely in the region is called the interior of the
angle and the other the exterior. Two angles are adjacent if they share a ray but no interior points.

Note that each interior angle (as defined) is less than a straight angle. The measurement of exterior
angles is considered in Methodology 10.3.3 in the supplement.

Activity 3.7. What are at least three different units for measuring the size of an angle? (Answers include,
degree, radian, turn, grad, house (astrology), Furman14.)

Activity 3.8. Measure, don’t calculate, the circumference of a convenient cylinder. Compare the result if
you measure the radius or the diameter and then calculate the circumference. We have found this a useful
exercise for college freshman; we urge future teachers to clarify this distinction for their students.

We survey here some modern postulate systems for geometry that appear in textbooks for GeT. In line
with SLO4, we focus on those books that adopt an axiomatic approach and leave for other chapters those
texts (e.g. [Ced01, HT20] among many) who treat other strands of geometry discussed in [Hen02]. Our
categories reflect the intellectual needs of the system builders (Euclid, Hilbert, Birkhoff). We hope our dis-
cussion of the motivations of various results and argument can help the instructor respond to the intellectual
needs of the students [Har13].

Methodology 3.9 (Postulate systems classified by basic notions15). 1. Hilbert [Hil62, Hil71, Har15,
Har00, Ser93] makes points, lines, and congruence of segments and angles fundamental16;

2. Birkhoff [Bir32, BB59], SMSG standards ([Ced01, SMS95]); distance is fundamental; all properties
of the reals are implicitly assumed (via ruler and protractor postulates17);

14The last two were suggested by high school teachers and can be found online.
16[Man08] (historically) and [ADM09, Mil07] (mathematically) justify the Euclidean use of diagrams. [Tar59, Szm78] makes a

logical but not pedagogical simplification reducing to one kind (sort) of object: a line is a set of collinear points (three points are
collinear if they satisfy betweenness in some order).

17 [Moi90, p 137] carefully distinguishes between what he calls synthetic and metric approaches. Roughly speaking, his synthetic
corresponds to Hilbert (HP) and metric to Birkhoff. Hilbert with (HP5) establishes a metric, but the range is a field that depends on
the model of HP5. It is only if Dedekind’s axiom is assumed that this becomes a real-valued metric. From our standpoint, these are
different synthetic approaches (different axioms in different logics – first vs second order).
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3. Transformations are studied in two ways: i) within one of the Hilbert or Birkhoff systems
[BH07, Cla12, Mar82] and ii) Viewing transformations as fundamental notions [Kin21, Wei97]. All
use Birkhoff’s axioms except Martin and Weinzweig18.

Some recent approaches to high school geometry (e.g. [Edu09a, Ill19]) adopt a local approach. Rather
than positing a global axiom system, they carefully state and argue from premises for particular topics.

Notation 3.10 (Hilbert style axiom sets for plane geometry). [Bal18] extensively explores the relationship
among the following important subsets of Hilbert’s axioms for geometry.

1. Neutral Geometry (HP) The system HP denotes (our translation of) Hilbert’s first three axiom groups
(Euclid’ s first four postulates.). A model is called a Hilbert plane

2. Circle free (HP5) The system HP5 is obtained by adding the parallel postulate to neutral geometry.

3. Euclidean geometry (EG) The system EG is HP5 plus circle-circle intersection; a model is called a
Euclidean plane

4. Continuity axioms: Axiom of Archimedes and Dedekind completeness (Section 10).

4 A guiding problem
Pedagogy 4.1 (SLO2, SLO8: Role of this section). We began our workshop with the following exercise, first
used with future middle school teachers, to emphasize the importance of ruler (straight-edge) and compass
constructions in basic geometry and with the hope that the questions in the activity would provoke a need for
the proof in Sections 5-8. While a solution using analytic geometry is fairly straight forward, the process of
creating a purely geometric proof gives a deep insight into ‘(a) recognize and communicate the distinction
between axioms, definitions, and theorems, and describe how mathematical theories arise from them, (b)
construct logical arguments within the constraints of an axiomatic system’ (SLO 4).

Exercise 4.2. Each group chooses an odd number n between 2 and 10. After the number is chosen, the
group will be asked to fold a string to divide it into as many equal pieces as the number they chose. Other
physical models will be used. Activity - Divide a line into n equal pieces.

Exercise 4.3. SLO8: CCSS G-C0-12 For an arbitrary n, here is a procedure to divide a line segment into n
equal segments.

1. Given a line segment AC.

2. Draw a line through A different from AC and lay off sequentially n equal segments on that line, with
end points A,A1, A2, . . .. Call the last point D.

3. Construct B on the opposite side of AC from D so that AB ≈ CD and CB ≈ AD.

4. Starting at B, lay off n equal segments of length AA1 and call the points so constructed on BC
sequentially B,B1, B2, ..., Bn − 1, C.

18See Hartshorne’s review [Har11] of [BH07] ‘To begin with,the authors devote the first chapter to the axiomatic foundations of plane
geometry. Here already, following a popular modern trend, they diverge from Euclid’s purely synthetic geometry by presupposing the
real numbers, and implicitly using some concepts of analysis.’
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5. Draw lines AiBi.

6. The points Ci where Ci is the intersection of AiBi with AC are the required points dividing AC into
n equal segments.

Figure 1: Dividing the line

Exercise 4.4.

1. Use the algorithm described above to divide an arbitrary line segment into 5 equal segments. (Could
be done in pairs. One person draws the line; the two have to divide it up.)

2. Show this construction used only Euclid’s first 3 axioms, listed in Axiom 5.1.1 and 5.1.4 below.

Pedagogy 4.5 (SLO2: Why is this assignment made?). We are really asking, how and why does this con-
struction work? Working in our system we see Euclid’s first three postulates suffice to make the construction.
See Exercise 5.1.6. We will need SAS and more to prove it works! We start with this exercise both to give
the student a reason to prove (stimulate intellectual need [Har13]) and to emphasize this distinction between
rule-based construction of geometric objects and a deductive verification of geometric propositions.

5 Book I: Propositions 1-34
The construction in the guiding problem, Exercise 4.3, is rather straightforward using only Euclid’s first
three axioms; the proof that the construction works involves much more. To prepare for this argument,
we amalgamate the approaches of Euclid and Hilbert, trying to maximize both understanding and rigor.
The material adapts some results from the first 34 proposition of Book I of Euclid to solving our guiding
problem. In the remainder of Section 5, we develop material from Book I of Euclid that is used in Section 6
to almost prove the construction works. The remaining issue is the sticking point for each of Euclid, Hilbert,
and Birkhoff: the side-splitter theorem. Adopting Hilbert’s solution, in Section 7 we define a field of line
segments and thus obtain an algebraic theory of proportion.

Pedagogy 5.0.1 (SLO5, 7: Reading a diagram). What diagrams meant classically. Inexact properties
can be read off from the diagram: slightly moving the elements of the diagram does not alter the property.
Intersections, betweenness and side of a line, inclusion of segments are inexact.
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What classical diagrams don’t mean Anything about distance, congruence, size of angle (right angle!)
may be deceptive. Since incidence is exact, you can’t read off whether a point is on a line but you can read
off that two lines intersect in a point and then name that point and then use the fact that it is on each line.

What high school diagrams mean Classical diagrams are enhanced in modern texts. Besides the in-
ferences allowed above, SAT instructions say ‘All figures in this test are drawn to scale unless otherwise
indicated’, e.g., ‘Figure not drawn to scale’. Students are taught tick marks for congruent segments, angle
marks for congruent angles, right angle marks, parallel marks. Figures on one side of a line are assumed to
be in that half-plane. Points that appear on a line(s) can be assumed to be on that (those) line(s).

We now fulfill our promise to give more detail on rules of inference.

Definition 5.0.2 (Contraposition). Let A and B be mathematical statements. The contrapositive of ’A
implies B’ is ’¬B implies ¬A’

Fact 5.0.3 (Logical fact). Any implication is equivalent to its contrapositive.

Pedagogy 5.0.4. SLO1 Fact 5.0.3 is easily checked to be valid by truth tables. High school geometry texts
sometimes ask students to memorize the names of the four variants on a conditional (if-then) statement.
One is the inverse that I know only from such books. This is counter-productive; only the conditional,
converse and contrapositive are used frequently. A frequent difficulty is to understand why ‘A implies B’ is
declared true when both A and B are false. The first author found it useful in undergraduate logic courses
to emphasize that we are formalizing English. The ambiguity between inclusive or (either one or both) and
exclusive or (but not both) or is easy to illustrate. Logicians decided use ∨ to mean inclusive or. A similar
decision was made for implication→. Of course if the instructor finds explanations that convince students
that’s even better.

Extension 5.0.5 (SLO1, SLO4, SLO9: Supplemental Extension: Rules of Inference). Late 19th century
mathematicians banished the drawn diagram from semi-formal and even informal mathematics. The SLO1
narrative defines a theorem as ‘a statement that can be proved from the axioms without regard to interpreta-
tion’ (i.e. holds in every interpretation that satisfies the axioms). While correct in spirit, it misses an essential
point; how is ‘without regard to interpretation’ guaranteed? The answer is to specify clear requirements on
what statements are and rules for deducing one statement from earlier ones. These can be found in any
introductory logic text and many discrete math books. [BE02] includes computer software that explains
‘truth in a model’ in a very basic way. [Lyn67] is old (My copy is stamped $3.25) but makes the distinctions
immediately below very clearly.

Here is a short outline. Propositional logic has variables p, q . . . which stand for propositions (they are
true or false). A sentence is a Boolean combination of propositions (combining by: and, or, not, implies).

(#) Every tautology is an axiom of propositional logic (check by truth tables). The only rule of inference
is modus ponens: from φ and φ→ ψ infer ψ.

Sentential Logic replaces variables p, q . . . with atomic formulas of a first order language (e.g.
I(A, `), B(C,A,E) and allows the same sorts of Boolean combinations (e.g. I(A, `) ∧ B(C,A,E) means
A lies on ` and is between C and E). This sentence does not choose between two contradictory extensions
I(A, `) ∧ B(C,A,E) ∧ I(C, `) and I(A, `) ∧ B(C,A,E) ∧ ¬I(C, `). The first implies E is on ` and the
second implies it is not. In order to continue the proof one may have to make case distinctions. See one of
the many analyses online of fallacious proofs that ‘all triangles are isosceles’.

We use the same rules of inference (#) – translating a sentence into a Boolean combination of proposition
by mapping each atomic formula with constants into a unique propositional variable. Then checking to see
if it follows from the axioms by truth tables or (#) .

13



The logic of geometry is slightly more complicated. The construction postulates below have the form
‘Every set of point and lines satisfying a formula ∆1 can be extended to a set satisfying ∆2’. Theorems (and
Euclid’s 4th and 5th postulate) are even easier; they have the form ‘Every set of elements and lines satisfy
∆’. That is, the most complicated results can be stated in the form: for every X satisfying φ there exists a
Y such that X and Y both φ and ψ.

Now there are two more rules:

1. Existential instantiation: Given a construction postulate and a sentence describing various points
and lines some of which satisfy the hypothesis of a construction axiom. Choose a name for a witness
to the construction postulate and deduce the conjunction of the given statement which the assert the
conclusion of the postulate about the witness and the data which satisfies the hypothesis.

2. Universal generalization: From any statement φ about named points and lines
A,B,C, . . . , `1, `2 . . ., we can deduce: ‘φ holds for all X,Y, Z, . . . , x1, x2 . . .’.

First order logic permits iterated use of both existential and universal quantifiers over elements. ‘There is
a line with seven points’ is a permissible sentence. Second order logic permits iterated use of both existential
and universal quantifiers over sets. The logical complexity of the continuity axioms is explored in Section 10.

Extension 5.0.6 (The fly in the ointment). In more complicated arguments (unlikely to appear in high
school), the location of the witness for a construction postulate in the existing diagram force a different
proof19.

Recent research clarifies and formalizes the ways that diagrams played an essential role in mathematical
proof for 2000 years. [Man08] lays out the main issues and historical background. [ADM09] and [Mil07]
provide formal systems with the diagram explicit and with methods to control the number of cases. [ADM09]
show their diagram-based system is complete for a set of sentences that include the results of Euclid. See
[Bal18, §9] for a summary.

Pedagogy 5.0.7. An excellent reference for grasping these connections is [BE02], which includes very
helpful software (Tarski’s world) to explore the connections between syntax and syntax. We discussed the
importance of the equivalence of an implication with its contrapositive in Definition 5.0.2 through Peda-
gogy 5.0.4. Understanding this equivalence and fact that such an equivalence fails for an implication and its
converse is very important. Spelling out the connection with inverse (inverse of p→ q is 6 p→6 q) is known
primarily because it was part of Aristotle’s square of opposition.

5.1 Construction Postulates
Our vocabulary contains unary predicates P and L, binary I and ternary B , standing for point, line, in-
cidence and between. We introduce further vocabulary such as predicates for congruence later. Here are
Euclid’s first three postulates. We don’t list in detail Hilbert’s betweenness axioms that imply Axioms I and
II.

Axiom 5.1.1 (Euclid’s first 3 axioms in modern language).

• Axiom I Given any two points there is a line segment connecting them.

19See the ‘proof’ that all triangles are isosceles [Gre93, p 48-50] and many explanations on the net.
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• Axiom II Any line segment20 can be extended indefinitely (in either direction).

The following is a translation of Euclid’s Postulate II from a rule for a construction into a Hilbertian
assertion that for any witness to Euclid’s ‘given’, there are further witnesses for his conclusion.

For any point A and B and any C with B between A and C, there is a D such that C is between A
and D.

• Axiom III Given a point and any segment there is a circle with that point as center whose radius is
the same length as the segment.

Hilbert’s first three axioms assert that two points determine a line and there are three non-collinear points.
They follow from Euclid’s first three, (Axiom 5.1.1).

Pedagogy 5.1.2. Circles Euclid chooses a fundamental notion that does not appear in Hilbert. Hence, we
include Axiom I.3 which replaces [Hil71, Axiom III.1]. In addition to grounding the work students will do
with circles, Axiom III is a much more tangible way to transfer distance than Hilbert’s. [Har00, p 102-3]
describes three of Hilbert’s tools which, somewhat awkwardly, allow one to obtain the results of Euclid’s
constructions.

Fine historical point. Euclid does not explicitly mention that overlapping pairs of circles and circles
overlapping a line actually intersect and Hilbert never mentions circles. Axiom 5.1.4 makes the assumption
precise. In thinking about Exercise 5.1.3 consider why Euclid’s notion of diagrams might have caused him
to think no further Postulate was necessary to prove Proposition I.1.

Exercise 5.1.3. CCSS G-CO.13 Prove Proposition I.1 of Euclid: To construct an equilateral triangle on a
given finite straight line. Check with [Euc56].

Following [Har00] we label this axiom E for Euclid as he treats circles while Hilbert doesn’t.

Axiom 5.1.4 (Axiom E: Circle Intersections). If from points A and B, circles with radius AC and BD are
drawn such that each circle contains points both in the interior (those points that are connected to the center
of the circle by segments that don’t cross the circle) and in the exterior of the other, then they intersect in two
points, on opposite sides of AB.

As Hartshorne notes, one can conclude from E a line circle axiom: If a line contains a point inside a
circle, it intersects the circle (twice!). In many expositions (e.g. [Gre93, p. 80]), Axiom 5.1.4 is deduced
from the continuity axiom and used to prove the circle propositions from Euclid’s Books III and IV. But
Hartshorne [Har00, p 114, 203] shows that only the theory EG (Notation 3.10) is needed for the circle
theorems.

Lemma 5.1.5 (Euclid’s Proposition 2: Rusty Compass). To place a straight line (segment) equal to a given
straight line segment with one end at a given point. In modern language: Given any line segment AB and
point C, one can construct a line segment of length AB and end point C.

In straight-edge and compass constructions, we transfer segments by measuring with the compass, then
copy that length to any other place on the paper (that is when we do the construction, our ‘rusty compass’
does not change the radius). See [Euc56, I.2] for his proof of Lemma 5.1.5 from the axioms I-III, which
implicitly assumes our Axiom 5.1.4. Euclid’s Propositions 2 and 3 essentially license the addition and
subtraction of line segments.

Exercise 4.3.1 is now easy.
20If Euclid is being used as a supplement, emphasize to students that a line for Euclid is a line segment for us.
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Exercise 5.1.6. Using Axioms I-III and Lemma 5.1.5 show the algorithm in Section 4 can be carried out.

The following exercise gives the student the chance to understand satisfaction in a model in a fairly
familiar example and to look at independence where the models are straightforward. While the college
students have seen analytic geometry over the reals, here we note that the construction can act on any field.

Exercise 5.1.7. Prove the Cartesian plane over the rationals, defined as in Definition 2.6, models Axioms I
and II from Axiom 5.1.1 but not Axiom 5.1.4 (Axiom E). Thus, Axiom E is independent from axioms I-III.

Solution 5.1.8. To verify Axioms I and II, use the two point form for the equation of a line. The line in point-
slope form through (a1, a2) and (b1, b2), is y = mx + b where m = a2−a1

b2−b1 and then set b = b2 −m(b1).
Note that this tells us how to find a line through two arbitrary points so Axiom I is the segment between if
that line between the two points and the entire line verifies Axiom II. For a circle of radius r centered as
a, bc take all solutions in Q to (x− a)2 + (y − b)2 = r.

There is a close relation between these independence results and properties of fields.

Definition 5.1.9. A field is Pythagorean if for every a,
√

(1 + a2) exists and Euclidean if for every a,
√
a

exist.

The geometric context is in e.g. [Har00, §12].

Fact 5.1.10. 1. A field is Pythagorean iff it coordinatizes a Hilbert plane (model of HP5).

2. A field is Euclidean iff it coordinatizes a Euclidean plane (model of EG).

3. Characterizations of fields satisfying cubic equation and connections with origami can be found in
[Alp05, Mak19].

Studying such examples integrates the geometry with elementary field theory and gives very concrete
examples of independent axioms.

Exercise 5.1.11. Extend Exercise 5.1.7 to show that Axiom III is true Π(F ) if F is a Euclidean field.

5.2 Betweenness, Order, and Planarity
Hilbert’s 2nd group of axioms [Hil71, §I.3], labeled Axioms of Order, prescribe the behavior of the primitive
concept: between. B(x, y, z) means y is between x and z. His Theorem 6 roughly describes a linear
order derived from the ‘between’ relation. Szmielew [Szm78, §7.1] gives ten axioms for betweenness (think
of statements that are true of a symmetric (B (A,B,C) ↔ B (C,B,A))) and then carefully derives the
definition below of a relation ≤ that linearly orders (Definition 5.2.1) the line ` through ABC.

Recall Definition 2.2 of a linear order.

Definition 5.2.1. 1. Fix ` = ABC, the line through the three points, and define ≤ for P,Q ∈ ` by

P ≤ Q↔ (B (P,Q,B)∧B (P,B,C))∨(B (P,B,C)∧B (A,B,Q, ))∨(B (A,B,Q)∧B (B,P,Q, )).

In fact, this definition can define a linear order in either direction. By a tricky argument, treating the rays
in each direction separately, Szmielew proves:

Theorem 5.2.2 (Linear order and betweenness). [Szm78, §7.1] For any distinct A,B,C with B (A,B,C)
the relation ≤ in Definition 5.2.1 is a linear order of `. Assuming for all A,C there exists a B such that
B (A,B,C) the order is dense.
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Pedagogy 5.2.3. The difficulty of the argument for Theorem 5.2.2 illustrates the intricacy of using the
betweenness relation. Thus, Hilbert’s axioms are not used in high school texts. However, we will just use
Theorem 5.2.2 in our development. So an alternative axiomatization would be to replace Hilbert’s order
axioms with our Theorem 5.2.2 and certainly this would be a reasonable high school postulate.

Definition 5.2.4. Given a line ` and points A,B on ` and D,E not on `.

1. the ray
−−→
AB is all points C on ` the same side of A as B (i.e. B (A,C,B) or B (A,B,C).

2. A region is connected if any two points can be connected by a polygonal path (a sequence of segments
such that successive segments share one endpoint).

3. D and E are in the same half-plane determined by ` if the line segment between D and E does not
intersect `.

Like Euclid, Hilbert develops geometry of dimension 3 with plane as a fundamental notion and so a
ternary predicate P for coplanar is in his formal vocabulary and the axiom holds when P (A,B,C). We
guarantee the universe is plane by requiring Pasch’s axiom to hold for any triplet of points; there is no
predicate for plane in our system. Here are two equivalent formulations of Pasch [Har00, §7].

Axiom 5.2.5 (Planarity Axioms). Pasch’s Axiom: Let A, B, C be three non-collinear points and let ` be
any line which does not meet any of the points A, B, C. If ` passes through a point of the segment
AB, it also passes through a point of segment AC, or through a point of segment BC.

Separation Principle: The points of a plane not on a line ` are divided into two disjoint connected regions.
Two points are in different regions exactly if the line connecting them intersects `.

Exercise 5.2.6 (Betweenness and Pasch are consistent). Show the two planarity axioms are equivalent.
Check that for any ordered field F , Π(F ) satisfies the betweenness and the Planarity axioms.

5.3 Congruence Axioms
This section fills what is generally agreed to be a true gap in Euclid. In Proposition I.4, he purports to prove
SAS. His argument implicitly relies on the superposition principle (Remark 5.3.22). As in Euclid, we take
the notions of segment congruence (AB ≈ A′B′) and angle congruence (∠ABC ≈ ∠A′B′C ′) as primitive.
We follow Hilbert [Hil62, §6] and assert these axioms:

Axiom 5.3.1 (Congruence Axioms). Congruence is an equivalence relation on undirected line segments (or
angles) that is reflexive, symmetric, transitive and such that the sum (difference) of congruent (line segments,
angles) is congruent.

Euclid uses ‘equal’ for our ‘congruent’ for undirected segments and angles.

Methodology 5.3.2 (On congruence axioms). The symmetry of angle congruence arises because, follow-
ing Euclid and Hilbert we are comparing angles not measuring rotation. We stated this axiom in English.
Formally, for angles we would add a 6-ary predicate (4-ary for segments) and write C (A,B,C,D,E, F ) to
translate the axiom for two angles ABC and DEF . Euclid uses ‘equal’ for our ‘congruent’ for undirected
segments and angles.
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Definition 5.3.3 (Triangle congruence). CCSS G-C0-7 Two triangles are congruent if there is a corre-
spondence (bijection between the angles and sides of one and the other) so that corresponding angles and
corresponding sides are congruent.

Rigid motions (5.3.21-5.3.23) clarify the notion of triangle congruence.

Definition 5.3.4. A rigid motion is a bijection from points to points that preserves betweenness, collinearity
(so it induces a bijection on lines), and congruence of segments and angles.

A rigid motion is a reflection about ` if it fixes ` pointwise and sends a point A not on ` to an A′ such
that ` is the perpendicular bisector of AA′.

Methodology 5.3.5 (Labeled triangle congruence). Some mathematicians and some high school texts treat
congruence as a property of labeled triangles. But then a scalene triangleABC is not congruent toACB. By
looking at the statement of I.4, it is clear this is not Euclid’s intent. He specifies ‘some correspondence’; in
particular, reflected triangles are congruent. But requiring the labeling is to demand that the correspondence
preserve orientation. Since rigid motions preserve congruence, under labeling reflections are no longer rigid
motions. Hilbert treats a weakening of SAS, [Hil71, Appendix II] to act only on oriented triangles (so rigid
motions must preserve orientation).

While congruence is a property of triangles not of labeled triangles it is a useful convention to require that
using the symbol ≈, writing4ABC ≈ A′B′C ′ implies that the primes indicate the correspondence. Often,
in describing a polygon ABCDE..., any consecutive letters in the name refer to consecutive (connected by a
side) vertices in the polygon.

Methodology 5.3.6 (Axiom Choice). Just as we had a choice of which concepts to specify as basic, we
have choices to make for axioms. Euclid’s Theorem I.4 (SAS) has been known since antiquity to rely on an
implicit ‘principle of superposition (Definition 5.3.4)’. In modern language we express this by saying the
group of rigid motions (Definition 5.3.4 ) acts transitively 21 on each equivalence class of congruent angles.
Hilbert chose to do this by simply making SAS an axiom. Euclid uses superposition (unnecessarily) again
to prove I.8 SSS and proved without any hidden assumptions that SAS implies ASA and AAS. We chose
SSS and prove SSS implies SAS. Here are two reasons for choosing SSS. 1) It is very practical: any three
sticks that can form a triangle will always form the same triangle.

It is minimalistic: SSS only uses segments in its statement, all others use segments and angles, and
defining angles is not trivial.

Pedagogy 5.3.7 (Too many axioms). A major weakness of many high school texts is to think the equivalence
proofs of the congruence propositions are too hard for high school. Some high school geometry texts list
many of the congruence theorems (SSS, SAS, ASA, HL etc.) as separate axioms. This destroys one of
the main features of axiomatics: the search for a small number of (ideally independent) assumptions from
which the theory can be deduced. The cost is that students think mathematics is about memorization. This
objection is not mere pedantry; calling a known theorem a postulate destroys the concept of axiom system.
If to cover certain material (for reasons of time or perceived difficulty) one has to skip proofs, announce that.
Don’t pretend a new hypothesis has to be introduced.

Axiom 5.3.8 (The triangle congruence postulate: SSS). CCSS G-C0-8 Let ABC and A′B′C ′ be triangles
with AB ≈ A′B′ and AC ≈ A′C ′ and BC ≈ B′C ′ then4ABC ≈ 4A′B′C ′

Methodology 5.3.9 (Failure of Protractor postulate). The protractor postulate fails for an F that doesn’t
contain π. The smallest model of the F -protractor postulate is Π(K(π)) where is K is the field of con-
structible numbers described at [Har00, 16.4.1]. But K satisfies HP5.

21A group G acts transitively on a set X if for every x1, x2 ∈ X , there is a g with g(x1) = x2.

18



Pedagogy 5.3.10. We prove Theorem 5.3.11 twice to illustrate the close connections between two styles of
presenting proofs. The paragraph style allows the use of English to smooth and emphasize the particular
inferences. The ‘two-column’ style regiments giving a reason for each step.

Theorem 5.3.11 (SSS implies SAS). CCSS G-C0-8, G-C0-10 Assume HP−. Let ABC and A′B′C ′ be
triangles with AB ≈ A′B′ and AC ≈ A′C ′ and ∠CAB ≈ ∠C ′A′B′ then4ABC ≈ 4A′B′C ′

Proof. We must show4ABC ≈ 4A′B′C ′. Draw circles with radius AC from A′ and with radius BC
from B′ using Axiom 3. Let them intersect at a point D on the same side of A′B′ as C ′. Note that triangle
A′DB′ ≈ ACB by SSS. (AB ≈ A′B′, BC ≈ B′D and AC ≈ A′D). So ∠CAB ≈ ∠DA′B′. But then
by transitivity of congruence, ∠C ′A′B′ ≈ ∠DA′B′. But then D lies on A′C ′ and in fact D must be C ′. So
we have proved the theorem. par

1 AB ≈ A′B′, AC ≈ A′C ′,∠CAB ≈ C ′A′B′ given
2 Draw circle with radius AC from A’ Axiom 5.1.1.III
3 Draw circle with radius BC from B’ Axiom 5.1.1.III
4 Choose the point of intersection D of the circles on the same side A′B′ as C ′. Axiom 5.1.4
5 AD ≈ AC Def circle, 2, 3
6 4A′DB′ ≈ 4ACB SSS, 5
7 ∠CAB ≈ ∠DA′B′ DefofCongruence
8 ∠C ′A′B′ ≈ ∠DA′B′ Axiom 5.3.1
9 D lies on A’C’ Def: Congruence
10 D = C ′ DA′ ≈ CA′
11 C ′B′ ≈ CB 6, 10
12 4ABC ≈ 4A′B′C ′ SSS, 1, 10

2−column

We have introduced a new axiom SSS and deduced the theorem SAS. This raises two questions. Are
these propositions consistent with the earlier axioms? Are they needed? For ease of exposition, we name
the collection of earlier axioms.

Definition 5.3.12 (HP−). We denote the theory with axioms the construction postulates, the axioms of
order, and the congruence axioms for angles and segments (Axiom 5.3.1) HP−. HP adds SSS.

Methodology 5.3.13 (relative consistency). We want to show that the new propositions are consistent rela-
tive to the earlier ones; that is, find a model ofHP− that also satisfies SSS. Then to show they are necessary,
we must find a model of HP− where SSS fails.

Exercise 5.3.14 (Consistency of SAS/SSS). Refer to 2.6 and show that SAS is consistent withHP− because
all of them are true in Π(<).) Modify the proof to show that SSS hold in Π(F ) for any Pythagorean (c ∈
F ⇒

√
(1 + c2) ∈ F ) field F (Hint: [Har00, §16, §17]). Observe that by Theorem 5.3.11, SAS is also

relatively consistent with HP−.

Methodology 5.3.15 (Consistency/Independence of SAS/SSS). Exercise 5.3.14 shows SSS is consistent
with the earlier axioms (HP−. To show SSS is independent from the earlier axioms, we must show the
negation of SSS is consistent. For this, following [Moi90, 112] we show the negation of SAS (¬SAS) is
consistent with HP−. We explain why this suffices in Methodology 5.3.16.
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Methodology 5.3.16 (Contraposition and independence). In the next argument 5.3.17, we show that ¬SAS
was relatively consistent withHP−. We now establish some notation of that argument and clarify why, since
SSS implied SAS, we can deduce that SSS is independent from HP−. Let φSAS(T, T ′) be the formulas
saying the triangle T, T ′ have a correspondence between the points such that both T and T ′ have two sides
and the included angle congruent.

Let φSAS(T, T ′) be analogous formula for SAS. And let ψ(T, T ′) be the formula saying the triangle are
congruent (by the same correspondence). Theorem 5.3.11 asserts that every model M of HP− ∪ {SSS},
M |= (∀T, T ′)φSAS(T, T ′) → ψ(T, T ′)). But Theorem 5.3.17 asserts there is a model M of HP− such
that M |= (∃T, T ′)φSAS(T, T ′) → ¬ψ(T, T ′)). Thus, there is a model of HP− where SSS fails and so
SSS is independent from HP−.

We had trouble translating Moise’s argument (below) from SAS to SSS. But once the consistency of not
SAS by Hilbert’s method was understood, the second author converted it to show SSS failed as well

Theorem 5.3.17. The negation of the postulates SAS and SSS are each consistent with HP−.

Proof. We will sketch two versions of the proof. The first is due to Hilbert in 1899, but we present a
simplification due to Bernays22.

Hilbert/Bernays: Hilbert presented his counterexample as a plane in 3-space (which may help in visu-
alization) but we take Bernays’ simpler planar version. Define a metric on the real plane by

d(〈x1, y1〉), 〈x2, y2〉) =
√

(x1 − x2 + y1 − y2)2 + (y1 − y2)2

Now check that the axioms of HP− are satisfied (not trivial). The triangle pictured below shows SAS
fails.

Now the triangles4BOC and4AOC satisfy φSAS(BOC,AOC) with the right angles as the included

angle. But d(B,C) =
√

2 +
√ 1

2 and d(A,C) =
√

2−
√ 1

2 so SAS fails.
The following diagram shows that SSS fails in the same model.

22Bernays was 11 in 1899. However, he worked with Hilbert from about 1918. He cowrote various later editions of the Grundlagen
with Hilbert and continued to revise after Hilbert died in 1943 with a final English edition in 1971.
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Moise: [Moi90, 112] shows the independence of SAS from the postulates of metric geometry by varying
the distance function along a single line. It is difficult to compare the metric geometries of Birkhoff with
Hilbert or Euclid because the former are second order.

We now discuss the group of rigid motions in order to illuminate the notion of superposition and set
the stage for studying geometry by transformations. We will use right angles in this study. Activity 5.3.18
motivates Euclid’s stipulative (using congruence) definition of right angle.

Activity 5.3.18. Fold paper to make a right angle.

Definition 5.3.19 (Right Angle). CCSS G-C0-1 [Euc56, Definition I.10] When a straight line standing on
a straight line makes the adjacent angles equal to one another, each of the equal angles is right, and the
straight line standing on the other is called a perpendicular to that on which it stands.

Extension 5.3.20 (All right angles are equal). The 4th postulate of Euclid becomes a theorem of Hilbert
([Hil62, Theorem 15][Har00, 9.6].

Definition 5.3.21 (ERM: Enough Rigid Motions23). A plane Π has enough rigid motions if

1. For any A,A′ ∈ Π, there is a rigid motion φ with φ(A) = A′.

2. For any three pointsO,A,A′ ∈ Π, there is a rigid motion φ that fixesO and sends the ray
−→
OA to

−−→
OA′

and

3. for any line ` there is a rigid motion φ that reflects Π over `.

Note that preserving the first three implies preserving congruence of angles by use of SSS.

Methodology 5.3.22. As we noted in Methodology 5.3.6, rigid motions are defined to clarify the concept
of superposition: if a rigid motion takes one figure to another, then they are congruent. This makes Euclid’s
argument rigorous. [Har00, §17] shows ‘enough rigid motions’ (ERM) in any Hilbert plane and conversely
that from the axioms for a Hilbert plane without SAS, ERM implies SAS. This is essentially Euclid’s proof
of Proposition I.4. Thus, the problem of superposition can be solved by adding any one of SAS, ERM, SSS
to the system HP−.

23[Har00, §17] calls it ‘exists’ rigid motions, but we say ‘enough’ to emphasize that transitivity properties are being assumed.
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The most immediate formalization of rigid motions is to add second order quantifiers over arbitrary
permutations of the set of points. But one use first order logic by adding a new sort M for motions and a
ternary relation R on P × P ×M that for each f in M the pairs 〈a, b〉 such that R(a,b, f) is the graph of
a rigid motion.

Theorem 5.3.23. Every rigid motion is a composition of reflections, translations and rotations.

Proof. A rigid motion φ falls into one of four disjoint classes according to the number of points they fix.

1. Suppose φ fixes all points; then, φ = ψ2 for some reflection ψ.

2. Suppose φ fixes at least two points A,B but not all. In that case φ fixes the line ` through AB setwise.
So under φ each X on ` remains the same distance from A and B; thus ` is pointwise fixed.

Suppose C 6∈ ` and φ(C) = C ′′ with C ′′ 6= C is on the same side of ` as C. As φ takes the segment
AC to AC ′′. But one is congruent to a proper subset of the other. So C 6∈ ` implies φ(C) = C ′ is
on the opposite side of ` from C. Then for any X ∈ `, XC ≈ φ(X)C ′ and φ(X) ∈ `. In particular
AC ≈ Aφ(C) and BC ≈ BC ′

Let `′ be the line extending CC ′. It is distinct from `, so intersects ` only in one point D. But since
φ fixes all lines setwise φ(D) is on ` ∩ `′, i.e, φ(D) = D. So DA ≈ DB and DC ≈ DC ′. Thus
4DBC ≈ 4DBC ′ and 4DAC ≈ 4DAC ′. So ∠CDB is a right angle and ` ⊥ `′. Now we can
see that φ is a reflection in `.

Let `′′ denote the image of ` under φ.

3. Suppose φ fixes a single point A. Then since φ preserves lines, it must be a rotation around A (not
equal to a full turn).

4. φ fixes no point. Since φ sends lines to lines and no points are fixed; if for any `, ` ‖ φ(`); φ is a
translation, if not it is a glide reflection [CK17, p 82].

Pedagogy 5.3.24 (SLO1: Van Hiele level of transformational geometry). Taking into account the necessity
for a deep understanding of the notion of abstract function24, one might posit a further ‘Van Hiele’ level
(though not geometric): Ability to work with abstract functions. This may not be an issue for college
students but additional work on functions might be helpful (and appear in the supplement).

The HS teacher testifies against this, ‘At the HS level we successfully work with transformations without
using functions. Working in the coordinate system, given two possibly congruent shapes, visually draw a
series of transformations of that shape to find out if the two coincide after the transformations.’

The method of proving the following important exercise is embedded in the proof of Theorem 5.3.11.

Exercise 5.3.25 (Move Angle). Prove: Let ABC be an angle. For any segment DE, choose a point F so
that ∠ABC ≈ ∠DEF .

Construction 5.3.26 (Constructing perpendiculars). CCSS G-C0-12 Given a line AD there is a line per-
pendicular to the line through AD at D.

24See [Har14] for an argument against the use of transformation-based systems in high school; the unfamilarity of sophomores with
functions is a key point.
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Proof. Extend AD and let B be the intersection of that line with the circle of radius AD centered at D.
Now construct an equilateral triangle with base AB by using Axiom 5.1.1 twice to construct the vertex C.
Draw CD. SSS implies4ACD ≈ 4BCD; so ∠CDA ≈ ∠CDB and therefore CD ⊥ AB. 5.3.26

Extension 5.3.27 (Independence of Congruence Axioms). In the proof we constructed an equilateral triangle
using only the first three postulates. We seem to need SSS to finish. [Hil71, p 39] shows by varying the
distance formula in the real plane, that the congruence axioms are independent from first two groups.

Definition 5.3.28 (Straight Angle). An angle ∠ABC is called a straight angle if A,B,C lie on a straight
line and B is between A and C.

Since Euclid does not introduce a measure for angles, he has names for the most important, straight and
right, and rough indications of size such as acute and obtuse.

Note a perpendicular creates two right angles on each side of a line. Constructing a perpendicular at the
vertex of a straight angle and applying Euclid’s fourth postulate (Extension 5.3.20) yields:

Theorem 5.3.29. CCSS G-C0-9 All straight angles are equal (congruent).

Proof. Let ∠ABC and ∠A′B′C ′ be straight angles. Construct lines BD and B′D′ perpendicular to AC
and A′C ′, respectively. Now ∠ABD + ∠DBC = ∠ABC and ∠A′B′D′ + ∠D′B′C ′ = ∠A′BC ′. By
Axiom 5.3.1, ∠ABD = ∠A′B′D′ and ∠DBC = ∠D′B′C ′. 5.3.29

We differ from Euclid here in allowing straight angles. Thus, we avoid the awkward locution of ‘two
right angles’ for ‘straight angle’.

Theorem 5.3.29 is statement about the uniformity of the plane. In terms of transformations, it says any
point and a line through it can be moved by a rigid motion to any other point and any line through it.

Definition 5.3.30. If two distinct lines intersect, non-adjacent (Definition 3.6) angles that have only the
vertex in common are called vertical angles.

Exercise 5.3.31 (CCSS G-C0-9). Deduce from Theorem 5.3.29 that vertical angles are equal.

Definition 5.3.32 (Isosceles). A triangle is isosceles if at least two sides have the same length. The angles
opposite the equal sides are called the base angles. (Note some textbooks require exactly two sides have the
same length).

Activity 5.3.33. [SLO8, 10: G-CO 11,12] Make two GeoGebra constructions using transformations so
that a) one always yields an isosceles triangle but it may not be equilateral and b) the other also yields an
equilateral triangle.

Activity 5.3.34. G-CO 10 Activity: Prove the isosceles triangle and exterior angle theorems. Compare
‘paragraph’ and ‘two column’ proof.

Theorem 5.3.35. CCSS G-C0-10 The base angles of an isosceles triangle are equal (congruent).

Proof. Let ABC be an isosceles triangle with AC ≈ BC. We will prove ∠CAB ≈ ∠CBA. The trick
is to prove4ABC ≈ 4BAC. (4BAC is obtained from4ABC by flipping the triangle over its altitude.)
We have two ways to prove the congruence. We know BC ≈ AC and AC ≈ BC. We can also note
AB ≈ BA and use SSS or ∠ACB ≈ ∠BCA and use SAS. In any case, since the triangles are congruent
∠CAB ≈ ∠CBA. 5.3.35
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Activity 5.3.36. Prove the angles of an equilateral triangle are equal. (Note that there are two proofs,
using either SSS or SAS, and they are distinguished by which correspondences are made in defining the
congruence. Explain this by considering the theorem in terms of rotational or reflective symmetry.)

The short proof of the following result is a typical use of proof by contradiction that emphasizes the close
connection among the congruence theorems and the inanity of making ASA an axiom.

Theorem 5.3.37 (ASA). CCSS G-C0-8, G-C0-10 If two triangles have two angles and the included side
congruent, then the triangles are congruent.

Proof. Suppose ABC and A′B′C ′ satisfy ∠ABC = ∠A′B′C ′, ∠ACB = ∠A′C ′B′ and BC = B′C ′.
We will show the triangles are congruent.

Choose D on A′B′ so that AB ≈ DB′ (We’ll assume D is between A′ and B′ for contradiction. If A′ is
between B′ and D, there is a similar proof.) Now, AB ≈ DB′, BC ≈ B′C ′ and ∠ABC ≈ ∠A′B′C ′ so by
SAS, 4ABC ≈ 4DB′C ′. Since the angles correspond, ∠DC ′B′ ≈ ∠ACB and so by Common Notion
1, ∠DC ′B′ ≈ ∠A′C ′B′. But this is absurd since ∠DC ′B′ is a proper subangle of ∠A′C ′B′. 5.3.37

Theorem 5.3.38 (Constructing Perpendicular Bisectors). CCSS G-C0-12 For any line segment AB there is
a line PM perpendicular to AB such that M is the midpoint of AB.

Proof. Set a compass at any length at least that of AB and draw two equal circles centered at A and B
respectively. Let the two circles intersect at P and Q on opposite sides of AB and let M be the intersection
of AB and PQ.
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To show PQ perpendicular to AB, note first that 4APQ ≈ 4BPQ by SSS. So ∠APM ≈ ∠BPM .
Then by SAS, 4APM ≈ 4BPM . Thus ∠AMP ≈ ∠BMP . And, therefore these are each right angles
by Definition 5.3.19. But4APM ≈ 4BPM also implies AM ≈ BM so M bisects AB. 5.3.38

Note we could be more prescriptive and just as correct by requiring in the proof of Theorem 5.3.38 that
the circle have radius AB. But this is an unnecessary additional requirement.

Definition 5.3.39. If D is in the interior of angle ∠ACB, line CD bisects the angle ∠ACB if ∠ACD ≈
∠BCD.

5.4 The Parallel Postulate
Of course, the change in viewpoint of what axioms mean (Methodology 1.2) stems from the proof of the
independence of the parallel postulate. We do not rehearse here the well-known history but do discuss a
subtle ambiguity of the phrase ‘the parallel postulate’.

Definition 5.4.1. Two lines are parallel if they do not intersect.

The difference between several statements which are close to the parallel postulate provides interesting
historical and pedagogical background. The most succinct statement is: For a line ` and point A not on `,
there is at most one line parallel to ` through A. Observe that Euclid proved the existence of parallel lines
(Theorem 5.4.3). So spherical geometry, which was studied by the Greeks, could not have been seen as
an example to show the independence since any two great circles intersect. Playfair and Hilbert rephrased
the postulate as the existence of unique parallel lines; as [HT05] note, even prominent mathematicians were
confused by this shift.

The definitions of corresponding, interior, and exterior angles can be found in any geometry text.

Theorem 5.4.2 (Exterior Angle Theorem, Euclid I.16). An exterior angle of a triangle is greater than either
of the interior and opposite angles.

Some modern texts write remote interior angles for interior opposite.

Euclid’s proof: http://aleph0.clarku.edu/˜djoyce/java/elements/bookI/
propI16.html. But there is a subtle dependence on betweenness. See the treatment in [Har00, p 36].

Theorem 5.4.3 (Euclid I.27). If two lines are crossed by a third and alternate interior angles are equal, the
lines are parallel. Thus parallel lines exist.
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Proof. Suppose `1 and `2 are not parallel and intersect in point P . The hypothesis says the exterior angle
EFG to triangle PFE is equal to the interior angle PEB. That contradicts the exterior angle theorem 5.4.2.
So our assumption is wrong.

Axiom 5.4.4 (Heath’s statement of Euclid’s 5th postulate:). If a straight line crosses two straight lines in
such a way that the interior angles of the same side are less than two right angles, then, if the two straight
lines are extended, they will meet on the side on which the interior angles are less than two right angles.

Theorem 5.4.5. Axiom 5.4.4 implies there is at most one parallel to ` through P .

Proof. Suppose two distinct lines `1, `2 through P are parallel to `. Fix a transversal m that intersects `
with P on m. Since they are distinct the sum of the interior angles on the two sides of the transversal must
differ. So, for one of `1, `2, say `1, and for one side of m, the sum of the interior angles must be less than a
straight angle. Then by Axiom 5.4.4, ` is not parallel to `1, as required. 5.4.5

Theorem 5.4.3 and Axiom 5.4.5 establish the distinguishing feature of HP5. For any ` and P , there is a
unique line parallel to ` through P .

A key equivalent to the parallel postulate is that the measures of the angles in a triangle sum to 180o. In
fact, the simplest definition of a degree is 1

90 of a right angle. Non-Euclidean geometries can be classified
by whether that sum is more (semi-elliptic) or less (semi-hyperbolic25) than a straight angle [Har00, p 311].

Theorem 5.4.6. CCSS G-C0-10 HP5 proves the sum of the angles of a triangle is 180o.

Proof. We must show the sum of the angles of a triangle ABC is a straight angle.

25Elliptic is used when any two lines intersect and Hartshorne reserves hyperbolic for semi-hyperbolic satisfying the limiting parallels
axiom.
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Draw ECF so that ∠BCE ≈ ∠DBC (Exercise 5.3.25). Theorem 5.4.3 implies EC ‖ AD. The contra-
positive to Axiom 5.4.4 implies that each pair of consecutive interior angles sum to a straight angle for any
transveral, in particular BC, sum to a straight angle. So each of ∠ACB+∠ACB and ∠ABC +∠FCB is
a straight angle. Subtracting ∠ACB, we have the equality of alternate interior angles: ∠ABC = ∠BCF .
Now the sum of the angles of4ABC equals a straight angle as required. 5.4.6

6 Proof that the division of a line into n equal parts succeeds
We began this excursion into axiomatic geometry by trying to prove that for any n we could divide a line
into n equal segments. The construction (Figure 1) used only Euclid’s first 3 axioms. We need to show the
segments cut off by the Ci are actually equal. We use the methods of Section 5 to almost prove the procedure
in Exercise 4.3 works. We will discover that entirely different methods are needed for the last step in the
proof – the side-splitter theorem 6.0.8.

Pedagogy 6.0.1 (SLO7). The classification of quadrilaterals is a major topic in high school geometry. It
is essential to first clarify the notion of ‘classify’; it does not help to say ‘a square is a rectangle just as
a parallelogram is a quadrilateral’ (heard from a high school teacher). The analogy the student needs is
‘squares are rectangle just as dogs and cats are animals’.

Classifications may be ‘exclusive’ or ‘inclusive’. Euclid requires an isosceles triangle to have exactly two
equal sides while modern texts include classifications that are inclusive; equilateral triangles are isosceles.

Definition 6.0.2. A parallelogram is a quadrilateral such that the opposite sides are parallel.

Theorem 6.0.3. CCSS G-CO.11 If the opposite sides of a quadrilateral are equal, the quadrilateral is a
parallelogram.

Proof. Suppose ABCD is the quadrilateral; draw diagonal AC. Then 4ABC and 4ACD are con-
gruent by SSS. Therefore ∠BAC ≈ ∠ACD. Now since alternate interior angles are equal, AB ‖ DC.
Similarly, BC ‖ AD. 6.0.3

A similar argument shows:

Theorem 6.0.4 (Euclid I.34, CCSS G-CO.11). In any parallelogram the opposite sides and angles are
equal. Moreover, each diagonal splits the parallelogram into two congruent triangles.

We repeat the diagram from our guiding problem. Since a quadrilateral whose opposite sides are equal
is a parallelogram (Theorem 6.0.3), we see ABCD is a parallelogram. We DO NOT know that A4B4CD is
a parallelogram. In order to establish that it is, we need some more information about parallelograms.
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Figure 2: Dividing the line

Motivation 6.0.5 (SLO1, SLO2). We are giving the proof of our guiding problem in reverse to show how the
abstract side-splitter theorem is needed to solve a concrete problem. The proof of it requires a new central
idea - proportionality. The next two sections are devoted to providing a firm foundation for proportion. By
using Hilbert’s proof rather than Euclid’s we are not relying on the Archimedean axiom.

Lemma 6.0.6. CCSS G-CO.11 If one pair of opposite sides of a quadrilateral ABCD, labeled as in
Figure 2, are equal and parallel, the figure is a parallelogram.

Proof. LetAD‖BC be congruent. Draw the diagonalAC. By alternate interior angles ∠BCA ≈ DAC.
The triangles ACB and ACD are congruent by SAS, using the hypothesis and that they share a side. So
∠BAC ≈ ∠ACD. Now viewing AC as a transversal of BA and CD, they are parallel and we finish.

6.0.6

Lemma 6.0.7. If ABCD is a parallelogram, labeled as in Figure 1 (Section 4), and two points X,Y are
chosen on the opposite sides BC and AD so that XC ≈ Y D then XCDY is a parallelogram.

Proof. Apply Lemma 6.0.6 with XC and Y D equal and parallel.
To finish the proof, we need a very strong result:

Theorem 6.0.8 (Euclid VI.2: Side-splitter, CCSS G-SRT.4). If a line is drawn parallel to the base of a
triangle the corresponding sides of the two resulting triangles are proportional and conversely.

Proof of the guiding problem assuming sidesplitter: By repeating the argument for Lemma 6.0.7, we
show all the lines AiCiBi are parallel. In particular the line C4B4 is parallel to the base B3C3. Applying
Theorem 6.0.8, we complete our proof as follows:

CB4

CB3
=
CC4

CC3
.

But we constructedB4C ≈ B3B4, so C4C ≈ C3C4, which is what we are trying to prove. Now move along
AC, successively applying this argument to each triangle. 4.3

The analogous problem of trisecting an angle was open for 2000 years before being proved impossible
in the 19th century using field theory.
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7 Finding the underlying field
We reduced our cutting the line problem to the side-splitter theorem VI.2. Hilbert defines a (semi)-field of
segments (addition and multiplication on the positive elements of an ordered field). He thus has the modern
algebraic theory of proportion and VI.2 follows easily (Section 8). Then (Section 9) he defines a measure of
area function which recovers Euclid’s theory of area and connects it with numerical measures of area.

Motivation 7.1. [SLO 7 Irrationality: the Pythagorean scandal] The geometry course is an excellent place
to organize historically and conceptually the college students’ understanding of irrational and transcendental
numbers (Section 10). Two or more magnitudes are commensurable if they share a common measure. Two
feet and three feet are commensurable, each being a multiple of a foot; but the diagonal and side of a square
are incommensurable. Thus, the irrationality of

√
2 is usually attributed to 5th century BCE Pythagoreans.

Eudoxus found a way to define the ratio between incommensurables in the 4th century BCE and expounded
in Euclid Book V on proportion, a couple of generations later. Crucially, this was a study of ‘magnitudes’ of
various dimensions. The notion of ascribing a number to a measure of area was only adopted in geometry
during the 19th century AD and put on a firm footing by Stolz and Pasch as expounded in [Hil62]. A beauty
of Hilbert’s approach is that he shows that (a suitable translation) of the (first order) axioms of Euclidean
geometry allow the measure of area in any Euclidean plane (Notation 3.10) by interpreting a field into the
plane. In Section 10, we will note how the real numbers provide the most commonly used example. For
further background on Greek study of irrational numbers see [Smo08].

The proof of the side-splitter theorem (Theorem 6.0.8.) is difficult because the meaning of ratio between
two incommensurable sides is obscure at best. To solve this problem, Hilbert defines geometrically a multi-
plication of line segments. Identify the collection of all congruent line segments and choose a representative
segment OA for this class. There are three distinct historical steps26. i) In Greek mathematics numbers
(i.e. 1, 2, 3 . . .) and magnitudes of various kinds( ‘length’, ‘area’, ‘volume’) are incomparable categories.
Numbers simply count the number of some unit; the unit varies from situation to situation. For them the
notion of assigning a number as the length of the diagonal of a unit square is incomprehensible. ii) Hilbert
introduces an addition and multiplication on line segments and proves the geometric theorems to show that
these operations (on line segments 0A on a fixed line) satisfy the field axioms except for the existence of
an additive inverse. iii) Finally define the additive inverse. Then both positive and negative numbers are
identified with points on a line.

We first introduce an addition and multiplication on line segments and then prove the geometric theorems
to show that these operations satisfy the field axioms except for the existence of an additive inverse.

Notation 7.2. Recall (Axiom 5.3.1) that congruence forms an equivalence relation on line segments. We fix
a ray

−→
` with end point 0. We consider the segment 0A on

−→
` as the representative of its congruence class of

segments. We will often denote the class (i.e. the segment 0A) by a. We say a segment (on any line) CD has
length a if CD ≈ 0A.

Similarly, Theorem 5.1.5 (Euclid’s Proposition I.2) established the way to add segments.

Definition 7.3 (Segment Addition). Consider two segment classes a and b. Fix representatives of a and b
as OA and OB in this manner: Extend OB to a straight line, and choose C on OB extended (on the other
side of B from A) so that so that BC ≈ OA. OC is the sum of OA and OB.

Diagram for adding segments
26For SLO7, see [GG09] and Heath’s notes to Euclid VI.12 (http://aleph0.clarku.edu/$\sim$djoyce/java/

elements/bookVI/propVI12.html.)
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Activity 7.4. Prove that this addition is associative and commutative.

Of course there is no additive inverse if our ‘numbers’ are the lengths of segments which must be positive.
We discuss finding an additive inverse after Definition 7.12. Following Hartshorne [Har00], here is our
official definition of segment multiplication.

Definition 7.5 (Multiplication). Fix a unit segment class 1. Consider two segment classes a and b. To
define their product, construct a right triangle27 with legs of length 1 and a. Denote the angle between the
hypotenuse and the side of length 1 by α.

Now construct another right triangle with base of length b with the angle between the hypotenuse and
the side of length b congruent to α. The length of the leg opposite α is ab.

Figure 3: Multiplication

Commutativity of this operation must be shown.

Exercise 7.6. We now have two ways in which we can think of the product 3a. On the one hand, we can
think of laying 3 segments of length a end to end. On the other, we can perform the segment multiplication
of a segment of length 3 (i.e. 3 segments of length 1 laid end to end) by the segment of length a. Prove
geometrically that these are the same.

Before we can prove the field laws, in particular commutativity of multiplication, hold for these opera-
tions, we introduce a few more geometric facts. The crux of the argument is to prove that the multiplication
is associative and commutative. Hilbert and many successors give this argument as arising from the Desar-
gues and Pappus theorems which hold in HP5 (neutral geometry plus the parallel postulate). We rely on the
cyclic quadrilateral theorem, because the techniques of its proof are more similar to standard high school
material.

Theorem 7.7 (Euclid III.20). CCSS G-C.2 In a circle, if a central angle and an inscribed angle intercept
the same arc, the inscribed angle is congruent to half the central angle.

27The right triangle is just for simplicity; we only need to make the two triangles similar.
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Exercise 7.8. Do the activity: Determining a curve (determinecircle.pdf).

Activity 7.9. Prove a central angle is twice an inscribed angle that intercepts the same arc. How many
diagrams (cases) must you consider? This activity is on the website in both java and GeoGebra.

We need (Corollary 7.10) of [Har00, Proposition 5.8] (Corollary 7.10), which is a routine (if sufficiently
scaffolded) high school problem.

Corollary 7.10. [CCSS G-C.3: Cyclic Quadrilateral Theorem] Let ACED be a quadrilateral. The
vertices of ACED lie on a circle (the ordering of the name of the quadrilateral implies A and E are on the
opposite sides of CD) if and only if ∠EAC ≈ ∠CDE.

Proof. Given the conditions on the angle draw the circle determined by A,C,E. Let D′ be the intersec-
tion of DE with the circle. By Theorem 7.7, ∠AD′E ≈ ∠EAC. But ∠EAC ≈ ∠AD′E so D = D′ as
required. Conversely, given the circle, apply Theorem 7.7 to get the equality of angles. 7.10

Theorem 7.11. The multiplication defined in Definition 7.5 satisfies:

1. For any a,
a · 1 = a

2. For any a, b
ab = ba.

3. For any a, b, c
(ab)c = a(bc).

4. For any a there is a b with ab = 1.

5. a(b+ c) = ab+ ac.

Proof. We prove item 2 (Figure below), since that requires some work. The slight variants for associa-
tivity and distributivity are in [Har00, 19.2].

Given a, b, first make a right triangle 4ABC with legs 1 for AB and a for BC. Let α denote ∠BAC.
Extend CB to D on the other side of AB from C so that BD has length b. Construct DE so that ∠BDE ≈
∠BAC and E lies on AB extended on the other side of B from A. The segment BE has length ab by the
definition of multiplication.

Since ∠CAB ≈ ∠EDB by Corollary 7.10, ACED lie on a circle. Now apply the other direction of
Corollary 7.10 to conclude ∠DAE ≈ ∠DCE called β. Now consider the multiplication beginning with
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triangle 4DAB with one leg of length 1 and the other of length b. Then since ∠DAB ≈ ∠BCE and the
leg adjacent to ∠BCE has length a, the length of BE is ba. Thus, ab = ba.

The key point for proportionality is 4): the ability to find inverses. This is done by noting that in Figure 3,
if multiplication by a is given by the angle α, multiplication by a−1 comes from β, the other acute angle in
the right triangle.

7.11

We have a semi-field because the addition does not form a group because there are no additive inverses
(negative segments). This is important for Hilbert because he is giving an entirely geometric proof. We
now show how to modify the construction to an additive group on each line. With this geometrically based
field we give in the next section an algebraic basis for the theory of proportion which allows us to prove
side-splitter.

Definition 7.12 (Adding points). Recall that a line is a set of points. Fix a line ` and a point 0 on ` not
merely the ray

−→
0A. We define an operation + on `. Now we identify a segment class a with the directed

length of the segment 0A. And write −a for the segment class A′0 where A′0 ≈ 0A but on the opposite side
of 0.

For any points a, b on `, we define the operation + on `:

a+ b = c

if c is constructed as follows.

1. Choose T not on `, and m parallel to ` through T .

2. Draw 0T and bT .

3. Draw a line parallel to 0T through a and let it intersect m in F .

4. Draw a line parallel to bT through F and let it intersect ` in c.

Diagram for point addition
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0b ≈ ac
That is, 0a+ ac = 0c which means a+ b = c.

After extending multiplication to the whole line by requiring that multiplication by a negative reverses
orientation we have proved:

Theorem 7.13. If Π is a model ofHP5, then, fixing any two points in Π as 0, 1, there are first order formulas
defining <,+,× such that 〈`,<,+,×〉 is an ordered field.

Methodology 7.14. Definition 2.6 showed we could define a coordinate plane over any field. Combined with
Theorem 7.13, we have a bi-interpretation of fields and planes, described informally in Methodology 11.1
and formally in the Appendix to the supplement. This means that the algebraic proofs in high school analytic
geometry can (but not easily) be converted to synthetic proofs in first order geometry.

Problem 7.15. Add a and b (i.e. construct c) when a is to the left of 0 on `.
Algebraically, the additive inverse of a is a′ provided that a+ a′ = 0. Construct the inverse of a.

8 Similarity, Proportion, and Side-splitter
This is one half of the culmination of Hilbert’s program (Methodology 2.13). On a purely geometric basis
(by Section 7) we define proportion and prove the side-splitter theorem. We need a couple of definitions.
Recall that in Section 7 we defined a field whose elements were line segments on a fixed line 01. So we
make the following definitions using a, b etc. to range over segments (O,A), (O,B) etc. Most texts will
have identified these segments with real numbers. We emphasize that the results are much more general than
that.

Definition 8.1. Let a, b, a′, b′ be segments on a fixed line
←→
01 . Then we say the ratios a : b and a′ : b′ satisfy

the proportion a : b = a′ : b′ (also written a : b : : a′ : b′ or a
b = a′

b′ ) if ab′ = ba′.

Definition 8.2. Two triangles 4ABC and 4A′B′C ′ are similar if under some correspondence of angles,
corresponding angles are congruent; e.g. ∠A′ ≈ ∠A, ∠B′ ≈ ∠B, ∠C ′ ≈ ∠C.

Activity 8.3. Various texts define ‘similar’ as we did, or as corresponding sides are proportional or require
both. Discuss the advantages of the different definitions. Why are all permissible?

Theorem 8.4. Similar triangles have proportional sides.

Proof. Suppose SVW and SRT are similar triangles as displayed in the diagram below we show

SV

SR
=
SW

ST
.
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Consider the special case that ∠RST is a right angle. Label SW as a, ST as b, SV as a′, SR as b′, Then
think of S as 0 and X as 1, using segment multiplication, the diagram shows b′ = eb and a′ = ea. Now by
multiplying algebraically and dividing by e we have picked a point X of ST with SX ≈ 01. ab′ = ba′. So
by definition a : b = a′ : b′ or SW

ST = SV
SR . [Hil71, p. 56] gives the half page argument that the restriction to

a right angle is unnecessary. 6.0.8

Theorem 8.5. Euclid VI.2: Side-splitterCCSS G-SRT.4 If a straight line is drawn parallel to one of the sides
of a triangle, then it cuts the sides of the triangle proportionally; conversely, if the sides of the triangle are
cut proportionally, then the line joining the dividing points is parallel to the remaining side of the triangle.

Proof. On 4SRT draw VW parallel to RT . As in the following diagrams, extend VW to a line and
pick points X and Y on VW on opposite sides of the triangle as shown.

Now ∠XV R and ∠V RT are alternate interior angles for the transversal RS crossing the two lines XY
and RT . So ∠XV R ≈ ∠V RT if and only if VW ‖ RT . But ∠XV R ≈ ∠SVW since they are vertical
angles. So ∠SVW ≈ ∠V RT if and only if VW ‖ RT . So4SRT and4SVW are similar and we finish
by Lemma 8.4.

Conversely, suppose we know VW cuts each side proportionally. By Theorem 5.4.3, choose W ′ on ST
with VW ′ ‖ RT . The parallelism and our definition of multiplication imply VW ′ is to ST as SV is to ST .
But we know SW ′ satisfies the same proportion so W = W ′. Thus, VW ‖ RT as required. 6.0.8

As we will sketch in Section 9, Euclid developed the notion of area (He says equal figure.) in I.35-I.48.
Commentators agree that this was specifically to avoid the use of proportion in the proof of Pythagoras.
In particular, Euclid needed the Archimedean axiom for his theory of proportion and so to prove the side-
splitter. Hilbert grounds the theory of proportion purely geometrically without assuming Archimedes’ axiom.

Exercise 8.6 (Euclid VI.31 CCSS G-SRT4). Prove the Pythagorean theorem using similarity.
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The supplement suggests several other proofs of Pythagoras including one due to President Garfield.

9 Area of Polygons
Pedagogy 9.1 ( SLO1, 2, 5, 7). Experience with college students in precalculus and calculus who react to
min-max problems by saying ‘I know the formula is lw or 2l + 2w but I don’t know which’ motivates this
section. The connection between (equi)-decomposition and area needs to be made in high (if not middle
school).

We expound here the distinction between defining ‘equal area’ by one of several notions of ‘decompo-
sition equivalence’ and by ‘equal measure’. Thus, Hilbert bridges one of the most significant distinctions
between Greek and 19th century geometry and fulfills the challenge of Motivation 2.13.

Methodology 9.2 (SLO4: What is area?). This section expounds the differences among three methods of
computing area that are frequently conflated in high school texts. Euclid begins by (implicitly) defining
what it means for two figures to have same area (Euclid-equal). By this means, he is able to prove the
Pythagorean theorem without invoking the notion of proportion – showing it is a fully geometric result. In
contrast, calculus based notions of measuring area rely fundamentally on approximating figures by infinitely
many smaller figures and taking limits.

Using the field defined in Section7, Hilbert defines ‘equal area’ by a slightly different notion (Hilbert-
equal) and introduces a finite procedure to assign a numeric value as the area of a polygon. In fact, these
three notions of equality are the same. However, they cannot be proved the same as equi-decomposable
(scissors congruent) without the use of the Archimedean axiom.

Pedagogy 9.3 (equidecomposition in a high school text). This notion (called area by dissection) is very
nicely handled in [Edu09a, 197-205] with two caveats. The rectangle postulate [Edu09a, Postulate 3.3]
(area of a rectangle is bh) should be labeled a definition and the Scissors-congruence postulate [Edu09a,
Postulate 3.4] should be labeled as a theorem whose proof is beyond the scope of the course. This latter
advice is reinforced by [Edu09a, §3.8] which exemplifies the method of proof. The authors are quite right
not to discuss the inductive proof in a high school text.

In Section 5.2 we established a linear order on (congruence classes of) segments by [AB] < [CD] if
AB ≈ A′B′ for some proper subsegment A′B′ of CD. This is not so easy in two dimensions; a long skinny
rectangle might or might not ‘be bigger’ than a short fat one. There are even two incomparable triangles.
In this section we discuss what sorts of objects we can assign area to and when two ‘figures’ have the same
area?
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Definition 9.4. 1. A (rectilineal) figure is a subset of the plane that can be expressed as a finite union of
disjoint triangles (Sides may overlap; interiors can’t.).

2. A polygon is a closed figure whose sides are line segments that intersect only at their endpoints and
each endpoint is shared by exactly two segments. Closed means you can trace the outer edges and
come back to where you started without any repetition.

The term figure is introduced both to explicitly describe what configurations ‘have area’ and to allow for
various types of decomposition.

Definition 9.5 (Two ways to measure).

Method 1: ‘equal’ area Define an equivalence relation28 E(P, P ′) on figures and define [P1] < [P2] if
some representative of [P1] is congruent to a proper subset of a representative of [P2].

We give three different equivalence relations of this sort in Definition 9.9, 9.10, 9.11. We see in Theo-
rem 9.13 that the first and third are the same for HP5; Scissors congruence, 9.10, becomes equivalent
in Archimedean geometries.

Method 2: equal numerical measure

Analytic measure Fix a unit of area; say, a square; tile the plane with congruent squares. Then to
measure a figure, continually (perhaps infinitely often) refine the measure by cutting the squares
in quarters and counting only those (possibly fractional) squares which are contained in the
figure. This notion is well-defined only for Archimedean geometries; This hypothesis is used
but never stated in [Bol78].

Geometric measure (Hilbert) Decompose the figure into finitely many disjoint triangles, which are
each assigned area bh

2 , and add those areas.

We call the last geometric area because the multiplication is the geometric multiplication of Section 7.
We consider now the three ways to implement Method 1. Before giving the formal definition, we see how
two of these methods are abstracted from the proof of Euclid I.35.

Theorem 9.6 (Proposition I.35). Parallelograms which are on the same base and in the same parallels equal
one another.

Proof. There are two ways of understanding this proof. The terms ‘Euclid equal’ and ‘Hilbert equal’
are defined below (generalized from this argument. Euclid says triangle 1 + 4 is congruent to triangle 3 + 4.
Subtract 4 from the first to get trapezoid 1 and from the second to get trapezoid 3. So 1 and 3 have the same
area. Add 2 to each to see the two parallelograms, 1 + 2 and 3 + 2, have the same area.

Hilbert says adding triangle 3&4 to parallelogram 1&2 gives the same as adding triangle 1&4 to paral-
lelogram 2&3, and 1&4 and 3&4 are equidecomposable (in this case congruent) so we can conclude the two
parallelograms have equal area. The distinction is that the weaker condition ‘equidecomposablity’ on the
triangles 1&4 and 3&4 allows him to build scissors decomposition into his notion. 9.6

Both understandings of the proof required both adding and subtracting area rather than scissors congru-
ent. One way of expressing the Archimedean postulate is to say ‘every line segment is finite’. We show in
Theorem 10.1.4 that there are non-Archimedean planes that satisfy HP5. Neither understanding of the proof
of Theorem 9.6 requires finite line segments. But we now see that scissors congruence does.

28In the supplement we define two such equivalence relations, Euclid-equal and Hilbert-equal, and prove they each agree with
geometric measure.
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Figure 4: Euclid I.35

Example 9.7. Suppose the lines BE and CF are infinitely long. The parallelograms ABCD and EBCF
are not equidecomposable although they have the same area by Theorem 9.6.

Proof. The sides of ABCD are all finite and so a decomposition must be into finitely many triangles,
each with all sides finite. But a decomposition into finite triangles of EBCF requires infinitely many
triangles because the entire line EB must be covered by edges of the decomposing triangles. However,
ABCD andEBCF have the same altitude and same base so they have the same geometric measure. 9.7

Pedagogy 9.8. The distinction described in this section is not high school material. But it is background
to avoid fallacious assertions. It is natural in K-12 education to describe equal area in terms of scissors
congruence and certainly scissors congruent figures have the same area. But Example 9.7 shows that in
some models of HP5 there are parallelograms of equal area that are not scissors congruent. Thus, their
putative equivalence is still another example of an independent proposition. This is not a topic for high
school. But teachers can remember to say ‘scissors congruent figures have the same area’ while not saying
‘figures with the same area are scissors congruent’.

Definition 9.9. [Euclid-equal polygons] For figures A and B:

1. A has 1-equal area with B if there is a figure C such that A+ C is congruent to B + C or there is a
C such that A− C is congruent to B − C.

2. Euclid-equal (provably same as equi-complementable) is the transitive closure of the symmetric and
reflexive relation 1-Equal content.

Definition 9.10 (Scissors Congruence). Two polygons are scissors congruent or equidecomposable if one
can be cut up into a finite number of triangles which can be rearranged to make the second.

SLO7: It is a sign of Euclid’s genius that he realized that a type of refinement of scissors congruent,
dubbed equal content by Hilbert around 1900, allowed the proof of proportionality of area to base and
height without appeal to Archimedes’ axiom.

Definition 9.11 (Equal content). Two figures P,Q have equal content aka equicomplementable or Hilbert
equal29 if there are figures P ′1 . . . P

′
n, Q′1 . . . Q

′
n such that none of the figures overlap, each P ′i and Q′i are

scissors congruent and P ∪ P ′1 . . . ∪ P ′n is scissors congruent with Q ∪Q′1 . . . ∪Q′n.
29The diagram is taken from [Hil71].
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Here is Hilbert’s schema for measuring area.

Lemma 9.12. [Har00, §23] For any n (k) and any triangulation of a figure by n (k) triangles with base bi
and height hi the sum Σi<n

bihi

2 = Σi<k
bihi

2 is the same. That value is the geometric measure of the area
of a polygon. So, the equivalence relation imposed by ‘same geometric measure’ is well-defined.

While Euclid-equality is transitive by definition, it is considerably more difficult [Har00, p 199-201] to
prove that Hilbert-equality is transitive.

Theorem 9.13. [Har00, §23] In any plane satisfying HP5, figures have equal area under either Hilbert’s or
Euclid’s notion of equal area if and only if they have the same geometric measure.

However the analytic method of Definition 9.5 only joins the equivalence if the field is Archimedean.

Definition 9.14. Two figures are analytically equivalent if they have the same analytic measure.

The supplement contains an example showing the Archimedean hypothesis is essential for the next result.

Fact 9.15 (Wallace-Bolyai-Gerwien Theorem30). Two polygons in an Archimedean plane are equidecom-
posable (scissors congruent) if and only if they have the same analytic measure.

Note that the Archimedean hypothesis is essential. If the line BE in Figure 4 for Theorem 9.6 is infinite
(Invert the segment AB created in Remark 12.2.), while all lines in ABCD are finite then the parallelo-
grams ABCD and EBCF are not equidecomposable even though they are Hilbert and Euclid equal. This
equivalence often appears in high school text books without making it clear that it requires a vastly stronger
hypothesis than any of the other results on polygons.

Interestingly, not all polyhedra (3D figures with plane polygonal surfaces) are scissors congruent; for
example, a regular tetrahedron cannot be cut up into polyhedra and rearranged into a cube [Bol78].

Fact 9.16 (Dehn-Sydler Theorem). Two polyhedra in <3 are scissors congruent iff they have the same
volume and the same Dehn invariant.

Dehn [D] proved in 1901 that equality of the Dehn invariant is necessary for scissors congruence. Sydler
proved the converse forty years later. We noted in Motivation 2.12 that Euclid first proved htareaprop and
then deduced sidesplitter. In contrast, Hilbert deduces the result via his theory of proportion.

Theorem 9.17 (Euclid VI.I). If two triangles have the same height, the ratio of their areas equals the ratio
of the length of their corresponding bases.

Proof. Definition 9.5 gave the geometric measure of a triangle to be bh
2 and Theorem 9.13 showed

geometric measure is equivalent to Euclid equal. So the result follows from realizing that A = bh
2 can be

read as ‘the area is jointly proportional to the base and the height. 9.17

30The forward direction was proven in the 19th century by William Wallace (not one of the progenitors of calculus), Farkas Bolyai
(his son discovered non-Euclidean geometry) and P. Gerwien. See Wikipedia.

38



In Euclid this result holds for irrationals only by the method of Eudoxus, which is a precursor of the
modern theory of limits, but did not envision the existence of arbitrary real numbers. Euclid implicitly relies
on the Archimedean axiom in his definition of proportion. He deduces side-splitter from the proportionality
while Hilbert goes in the other direction31. The development here shows that for any triangles which occur
in a geometry satisfying the axioms here32 the areas and their ratios are represented by line segments in the
field.

10 Archimedes, Dedekind, and Completeness
We quoted in Methodology 1.2, Hilbert’s desire ‘to choose for geometry a simple and complete set of
independent axioms’. In this section we first discuss Hilbert’s continuity axioms in the context introduced in
Methodology 1.4: T is descriptively complete [Det14] if T implies all the statements in our preexisting list of
‘true geometrical statements’. Then we consider more formal notions of ‘complete’ which were developed
in the first third of the 20th century.

A main theme of the preceding sections is that Hilbert (1899) established descriptive completeness of his
first four groups of first order axioms (not only for Euclid’s plane geometry but establishing Descartes’ ana-
lytic geometry [Har00, §20-23]). Hilbert’s second order continuity axioms (Group V) aimed at establishing

1. a geometric basis - set of geometric axioms - for what is variously called Cartesian/coordinate/analytic
geometry over the real numbers (as understood by Hilbert, not Descartes, though Descartes was point-
ing the way).

2. These axioms are categorical. A theory T is categorical if it has a unique model (up to isomorphism).

In the late 19th century the only rigorous basis for the real plane was to construct the real numbers from
the natural numbers by [Ded63] (1888) and then construct the Cartesian plane over the reals. But Hilbert in
1899 (Section 7) works from a plane satisfying geometric axioms and defines the field in it. By adding an
axiom implying the plane and the field are unique both goals are reached. The rather complicated story for
completeness is told in Methodology 10.2.3.

10.1 Continuity Axioms
Hilbert’s Group V (continuity axioms) contains two axioms. The Archimedean axiom is usually taken as a
property of an ordered group (or field). However, for geometry it says for any pair of line segments AB and
CD there is a natural number n such that n copies of AB cover CD. Since the n is unbounded, this axiom
is not first order but rather in a logic called33 Lω1,ω . Note that the statement of the Archimedean axiom
involves some notion of ‘addition of lengths’.

Euclid uses the Archimedean axiom in Book V on proportion and then to prove VI.2, the side-splitter
theorem. As we have seen (Theorem 8.5) Hilbert establishes VI.2 on the basis of axiom groups I-IV which
are all first-order.

31[Edu09b] shows the area of one of two similar figures is r2 times the area of the other, where r is the constant of proportionality
between lengths. They deduce this from side-splitter. It was Al Cuoco of the CME team who alerted the first author to Euclid going in
the other direction.

32Crucially, neither Archimedean, nor Dedekind complete, is assumed.
33Quantification is allowed only over individuals but infinite conjunctions and disjunctions are allowed. The Archimedean axiom

asserts an infinite disjunction:
∨

n φn(A,B,C,D) where φn says n copies of AB cover CD.
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Although expressed in an unusual way34, Hilbert’s completeness axiom can be regarded as the second
order statement asserting Dedekind completeness (equivalently, the least upper bound axiom) in the theory
of ordered fields. This is his only use of these axioms [Hil62] to prove geometric theorems; Hilbert’s other
applications are to proving metamathematical (independence/consistency) results.

A standard result in advanced calculus courses shows every Dedekind complete field is Archimedean.
So the Archimedean axiom is redundant in Hilbert’s system. He singles it out to show that the ‘(Dedekind)
completeness’ is not needed for such important results as Theorem 9.15 showing the equivalence between
decomposition and measure for determining area.

The example of the plane over the real algebraic numbers defined in Activity 3.5 shows:

Theorem 10.1.1. The ruler and protractor postulates and Hilbert’s completeness axioms are independent
from all the other axioms.

Pedagogy 10.1.2 (Impact on other courses). Theorem 10.1.1 is important for teaching precalculus and
calculus as it emphasizes the gap between transcendental and algebraic numbers. In fact, there are only
countably many algebraic numbers.

Pedagogy 10.1.3 (Student background). In particular, for Hilbert to show that his results do not depend
on Archimedes, he must show that non-Archimedean fields exist. Hilbert gives a concrete proof (involving
the study of rational function fields) of the existence of non-Archimedean fields, taking t to be infinite in an
ordering of the rational function field<(t). This is not usually taught in an undergraduate algebra course. We
give now a proof using the ‘compactness’ theorem for first order logic – a standard topic in an undergraduate
course in mathematical logic.

Theorem 10.1.4 (Proof of Existence of non-Archimedean fields). There exists a non-archimedean field.

Proof. We note in Methodology 10.2.4 that Tarski’s negation-complete extension of Euclidean geometry
is the theory of Π(M) where M |= Trcf , the set of all first order sentences in the vocabulary of fields
true in the real field. It has models of arbitrary cardinality and most are non-Archimedean. Consider the
set Σ of sentences: {n × AB < 01} for n ∈ N. Clearly every finite subset of Σ is satisfiable. By the
compactness Theorem35, they are simultaneously satisfiable in some model M of Trcf . Such an AB ∈ M
is an infinitesimal. Moreover, no complete first order extension of EG (Euclidean Geometry; Notation 3.10)
is finitely axiomatizable [Zie82]. There are uncountably many first order complete theories extending EG.

10.1.4

Pedagogy 10.1.5 (The two uses of the continuity axiom). There are two places where the continuity axioms
are necessary for a topic that may occur in a high school geometry course:

1. formulas like C = 2πr and A = πr2 can be true only if π is in the coordinatizing field.

2. Theorem 9.15 (figures are equidecomposable (scissors congruent) iff they have equal analytic mea-
sure).

Since Hilbert showed the equivalence among equi-complementability and equal geometric area from
HP5, the essential role of Archimedes is to show equal analytic measure implies scissors congruence.

34The axiom asserted ‘a maximal Archimedean geometry’, hence unique. Currently, ‘categoricity’ means uniqueness. And, complete
means negation complete 10.2.2. Strictly speaking, Hilbert’s ‘maximality’ axiom is only expressed in the arcane ‘sort logic’ [Vää14].

35In first order logic, if every finite subset of a set Σ of first order sentences is satisfiable so is Σ.
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Methodology 10.1.6 (Determining π). A key question is whether it is the same π in each of the equations in
Pedagogy 10.1.5.1 for area and circumference of a circle. Archimedes argues they give the same ratio, which
is not a number for him. In [Bal19] we outline arguments of [Apo67, Spi80] using calculus and [Wei20]
clarifying Archimedes’ approximation.

10.2 Consistency, completeness, and categoricity
We return to the issue of making the notion of a complete theory rigorous.

Methodology 10.2.1 (LogicS). Hilbert wrote [Hil62] in German, not in a formal language. So he had no
precise way of expressing negation completeness. What makes a German sentence ‘geometric’? Roughly 20
years after the publication of [Hil62], Hilbert developed his notion of formal logic. In his general formulation
quantification is allowed over individuals (x), sets of individuals (X), sets of sets of individuals and so on
(This corresponds to Russell-Whitehead’s theory of types.) Hilbert later observed36[HA38] that groups I-
IV are what we now call first order (for him, the restricted predicate calculus): quantification is only over
individuals and only finite conjunctions and disjunctions are allowed in combining statements. Now the key
distinction arises from Gödel’s completeness theorem: For first order logic, there is a system of inference
rules so that θ can be derived from T if and only if θ is true for every model of T . So for first order logic,
negation completeness implies the stronger deductive negation completeness: for φ ∈ Φ, either φ or ¬φ is
provable from the axioms of T . We explain in the next two paragraphs that this is impossible in 2nd order
logic.

Given a collection of statements Φ about possible systems for geometry, there are several ways in which
a subset Ψ of Φ can be thought complete for a collection of axioms T . Of course, each ψ ∈ Ψ must be
satisfied in each model of T . And the most natural notion of complete is:

Definition 10.2.2 (Categoricity and Completeness). 1. A consistent theory in a logic L is negation com-
plete if for any L-sentence φ, T ` φ or T ` ¬φ.

2. A theory T is categorical if it has exactly one model.

It may seem obvious that if a theory T is categorical then T is negation complete. However, Methodol-
ogy 10.2.3 explains the truth of that claim depends on the choice of logic L.

Methodology 10.2.3 (Completeness, categoricity and the choice of logic). Categoricity was confused with
negation completeness (Notation 10.2.2) until the late 1920’s. It seems obvious that categoricity implies
completeness. If each φ and ¬φ are consistent with T they both hold in the unique model of T , which
is clearly impossible. For first order theories, this argument is almost correct37. The difficulty is with the
‘clearly impossible’. For first order sentences since no change in the axioms of set theory will change the
truth value of φ in M . But the truth of a second order sentence about the real field may depend on the set
theory in which you work (Methodology 10.2.5).

Methodology 10.2.4 (First order completeness). The first order theory Trcf of the Cartesian plane over real
numbers is negation complete; one adds to EG the infinitely many axioms that say of the coordinatizing field

36This was certainly known in the 20’s; this is the earliest Hilbert reference for this fact that I could find.
37 Since the Löwenheim-Skolem theorem says that any first order sentence with an infinite model has a model of every infinite

cardinality, a unique infinite model is impossible. The categoricity criteria can be weakened to a unique model in some infinite
cardinality. But geometry/real closed fields fails that criteria as well. Tarski establishes completeness of geometry by showing the
quantifier elimination of ordered real closed fields.
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that every odd degree polynomial has a root [Tar59]. Alternatively, analogously to the Peano axioms for
arithmetic, Dedekind cuts are formalized to hold only for first order definable cuts [TG99, p 185].

Independence of the parallel postulate shows the axioms HP for neutral geometry are not complete.
Even the descriptively complete theory EG is far from negation complete. In fact, [Bee, Zie82] (first in
English) proves that if T is finitely axiomatized geometry consistent with Trcf there is no algorithm to
decide which sentences are consistent with T .

Methodology 10.2.5 (Incompleteness of 2nd order geometry despite categoricity). Write the statement in
pure second order logic expressing the continuum hypothesis38. By the celebrated work of Gödel and Cohen,
the continuum hypothesis is independent from the Zermelo-Frankel axiom for set theory (even with the
axiom of choice). Thus, Hilbert’s axiomatization is not negation complete for 2nd order logic.

As we noted in Remark 3.9 Birkhoff’s axioms are a description of the geometry over the real field (‘Real
field’ is defined in set theory). With Hilbert’s definition of the field, we can make this into a legitimate second
order axiomatization of a theory that is categorical in any particular model M of ZFC. Just say the field has
the least upper bound property. But the second order theory will depend not just on the given axioms but
only what set theoretic statements are true in M (as in 10.2.5).

Theorem 10.2.6. Fix two points 0, 1 on a Hilbert plane M and the line ` through them. Let <,+,× be the
ordering relation and field operations defined on ` by Theorem 7.14. Add the least upper bound axiom:

(∀X)(∃y)(∀x ∈ X)[x < y ∧ [(∀w)(∀x ∈ X)x < w)→ y ≤ w]].

The field on ` is a complete ordered field and so is isomorphic to the reals.

Proof. Clearly the ruler postulate holds on `. But we know by Theorem 5.3.23 that the group of rigid
motions acts transitively on lines so the ruler postulate holds on every line and so on M .

10.3 Protractor Postulate and Radian Measure
We discuss in this section the subtleties introduced by Birkhoff’s ‘protractor postulate’ and the connection
with radian measure.

Axiom 10.3.1 (Birkhoff’s ‘protractor postulate’). There are several variants:

I. Principle 3. ANGLE MEASURE. [BB59, p 47]. ‘All half-lines having the same end-point can be
numbered39 so that number differences measure angles.’

II. SMSG version [Ced01, SMS95]

1. Postulate 11. Angle Measurement Postulate To every angle there corresponds a real number
between 0 and 180.

2. Postulate 12. Angle Construction Postulate Let
−−→
AB be a ray on the edge of the half-plane H .

For every r between 0 and 180 there is exactly one ray
−→
AP with P inH such thatm∠PAB = r.

38Consider the second order sentence:

(∃X)(∃f)f is an injective function from X onto a proper subset of X ∧ (∃Y )(∃g)is an injective function from Y onto X

.
39By ‘numbered’, Birkhoff means that a real number can be assigned (to each half line).
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3. Postulate 13. Angle Addition Postulate If D is a point in the interior of ∠BAC , then
m∠BAC = m∠BAD +m∠DAC.

III. First order40 version: Protractor postulate If Π is a model of HP5 with associated ordered field FΠ

and fix a bijection α from (congruence classes) of angles (∠XAY ) to (0, 180) in such a way that if D
is a point in the interior of ∠BAC , then α(∠BAC) = m∠BAD +m∠DAC.

The choice of 180 in II.2 and III stems from Babylonian times. But in a system based on ‘grad’, we
would take 200. That, is the units of a protractor are ‘arbitrary’. Fix a number of units for the half circle and
then try to figure out how to choose points on the circle that measure many angles. There is a 13th century
description of how to construct such a protractor as a part of an astrolabe [Fal20, §4].

Activity 10.3.2 (Construct a protractor). See the Quora article [Chi10] for instructions.

Methodology 10.3.3 (Units). Postulates 11 and 12 are from [Ced01]; the Wikipedia article is identical,
except the real numbers in Postulate 11 are said to be between 0◦ and 180◦. This conflict illustrates one
of two distinct uses of the coordinatizing field. If the field is just some abstract object, then we can choose
the unit arbitrarily and proceed as in the Quora article [Chi10]. And devices for making this measurement
are dated as early as 1400 BC. And we are free to call that unit a degree41. On the other hand, if we take
that unit as measuring the distance from (0, 1) to the point where the ray intersects the unit circle, and if
we are in either Hilbert’s segment geometry, where each number corresponds to a line segment, or assume
Birkhoff’s ruler postulate, we have established a definition of length for arcs of the circle. That way numbers
are assigned to angles in Definition 10.3.1 suggests that he intends an abstract interpretation. However, this
intention is undermined by the ruler postulate -straight segments measure angles/arc length. And even more
[Bir32, fn 5, p 22], indicates he is thinking of radian measure by specifying angles are congruent whose
measures (now any real number) are congruent mod 2π. As noted in [Bal19], this construction of radian
measure requires calculus or at least infinite series.

Postulate 13 formalizes Birkhoff’s ‘number differences measure angle’. The exact statement is crucial;
it specifies that only angles less than a straight angle are measured. Radian measure may not appear in grade
10 geometry.

Methodology 10.3.4 (Consistency of the <-Protractor postulate (Definition 2.11.2)). Recall Activity 3.5,
specifically, ‘how can one ensure that angle measure is additive?’. A natural idea is to use the tangent
function (slope of the line). But it is not additive. The standard way to obtain an additive measure is to
use the arc length. But, as noted in Methodology 10.1.6, this requires analysis (at least ε, δ arguments for
summing series and most fully integration). Thus the consistency of either Axiom 10.3.1 I or II requires
advanced tools. Hilbert’s geometry bookOf course there are no countable models since the reals are explicit
in the ruler and protractor postulates. On the other hand, Axiom 10.3.1.III with first order geometry, is
shown consistent by a countable model M , where πM is taken as some number realizing the same cut in M
as π ∈ <, is shown in [Bal18, §10.3].

As noted in Methodology 10.3.3, radian measure is needed to extend the trigonometric functions from
angles less than a straight angle (developed in Euclid) to functions on the entire real line.

Pedagogy 10.3.5 (Radian Measure). Radians are not part of a standard high school geometry course. But
teachers need to understand the connection between the ‘conventional’ method of degrees in Methodol-
ogy 10.3.3 and the (implicit) use of arc length (in 11th/12th grade when circle trigonometry and radians are

41It is not clear whether SMSG per Wikipedia is assuming notion of degree is known.
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introduced). The first author brought a bicycle wheel into a large lecture for precalculus and had students
measure the length of the path as the wheel was rotated several times and then calculate the angle knowing
the radius of the wheel.

11 Non-Euclidean Geometry
We showed in Section 7, specifically Methodology 7.14, that the theories of Euclidean geometry and
fields were bi-interpretable. As we will see in this section Euclidean and hyperbolic geometry are also
bi-interpretable. In particular, Poincaré showed that one could interpret hyperbolic geometry in a disc on the
Euclidean plane. The converse is due to Hilbert.

The switch from the old to the new view of geometry (Comment 1.2) stemmed from the proof of the
independence of the parallel postulate. Most of the modern work on non-Euclidean geometry assumes the
existence of a real-valued metric (distance function) and is not done synthetically. However, [Har00, §34]
elaborates on some axiomatic non-Euclidean geometry. In neutral geometry (Hilbert plane), he proves there
is a rectangle if and only if the sum of the angles of a triangle is two right angles and introduces an axiomatic
trichotomy of semi-hyperbolic, semi-Euclidean and semi-elliptic geometries depending on whether the sum
of the angles of a triangle is <,=> (respectively) than 2 right angles. Further, he proves that a semi-
hyperbolic plane satisfying Hilbert’s ‘limiting parallel axiom’ (hyperbolic geometry) interprets a ordered
field. [BP23] and [Har77, Ex. 18.4] give a nice examples of a semi-Euclidean planes where the parallel
postulate fails (limited points in <ω/D where D is a non-principal ultrafilter).

Methodology 11.1 (Informal description of Interpretation). It is easy to confuse two meanings of interpre-
tation i) (somewhat archaic for logicians but used above for consistency with SLO4) as a witness to truth: ‘a
model of φ or T ’ is called ‘an interpretation of φ or T ’ and ii) a relation between two (languages, theories,
models). We mean the second in this section.

Two theories are bi-interpretable if there are interpreting maps F,G from each to the other such that
F ◦G is the identity.

One way to prove the consistency of, say, hyperbolic geometry, is to interpret it in a Euclidean model;
redefine the undefined terms of geometry (point, line, between, congruent, etc.) by formulas of Euclidean
geometry and prove that with this interpretation the axioms of Hyperbolic geometry are satisfied in each
model of Euclidean geometry. This yields that hyperbolic geometry is relatively consistent with Euclidean
geometry. We give a full definition in Definition 12.4. Nice introductions to interpretation for those familiar
with modern algebra is in [BN94, §3: Interpretability] and for the more logically oriented [Ena2x].

We define some theories of geometries and indicate interpretability relations.

Definition 11.2 (Limiting Parallels). 1. Two rays are coterminal if they eventually coincide.

2. A plane has limiting parallels if there are rays a through A and b through B that are either coterminal
or they lie on distinct lines not equal to AB and every ray in the interior of the angle BAb meets the
ray Bb [Har00, p 312].

We conclude this section with a summary of the interpretability relations between the Euclidean and
hyperbolic planes.

Theorem 11.3. 1. The theory of ordered fields is bi-interpretable with HP5 (neutral geometry + parallel
postulate. (Hilbert coordinatization and analysis of the cartesian plane over an ordered field.)

Whence, the theory of ordered fields is interpretable in EG (neutral geometry + Euclid’s 5th + E
(circle-circle intersection)
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2. The theory of Euclidean fields is bi-interpretable with EG. (See e.g. [Har00, Mak19].

3. Call Hyperbolic geometry HL:- neutral geometry + limiting parallels. The theory of Euclidean or-
dered fields is interpretable in HL [Har00, §41].

4. Call semihyperbolic geometry: neutral geometry + sum of the angles of a triangle < 2RA.

Exercise [Har00, 39.24] shows there is a semihyperbolic plane which is not hyperbolic42.

5. Clearly EG is not interpretable into HP5. If the coordinatizing field Φ(M) of a model of HP5 is not
Euclidean (Some positive number doesn’t have square root.), Π(Φ(M)) is not Euclidean (There are
two overlapping circles that don’t intersect.).

While he doesn’t state it quite this way, [Har00, §40] proves a converse to Theorem 11.3.3 and so

Theorem 11.4. The theory of hyperbolic geometry with limiting parallels (HL) is bi-interpretable with EG.

Thus we have shown, since both hyperbolic geometry and Euclidean geometry are bi-interpretable with
the real field, they are themselves bi-interpretable. That is, it is possible to define a model of each in any
model of the other. This emphasizes that interpretation preserves not meaning but consistency.

Conclusion We have explained three ‘axiomatic’ approaches to resolving the tension between synthetic
and analytic (coordinate) geometry: Euclid (no conception whatsoever of coordinates or even rational num-
bers), Hilbert (a synthetic foundation for coordinate geometry) and Birkhoff (a set theoretic foundation for
coordinate geometry – billed as synthetic). In the process we explore the methods to establish independence
and consistency for first order theories of geometry43 We do this by sketching a system of synthetic geometry
that proves the existence (from geometric axioms) of a coordinatizing field and thus grounds coordinatizing
geometry. Rather than exploring in detail the independence of the parallel postulate (SLO 9), we illustrate
crucial notions such as consistency and independence of propositions within the development of Euclidean
geometry. We focused on the different paths of Euclid and Hilbert to establishing theories of proportion and
area. Hilbert constructed a field geometrically enabling an algebraic definition of proportionality.

12 Appendix: Formal Systems
This section is background for instructors who want more details on the logical notions that are sketched
in the text. The aim is to give a precise notion of truth in a mathematical structure and give a more precise
account of the interpretation of theories for the non-Euclidean case, which are much more complicated than
the examples given in the chapter. Two accessible sources are [BE02] and [LK15]. This material is in any
introductory course in mathematical logic – and much more fully explained.

Definition 12.1. A formal system of first order logic consists of

1. vocabulary

(a) Logical vocabulary: (, ),∧,∧,¬,= ∀,∃ variables v1, v2, . . ..

(b) non-logical vocabulary τ 44: a list of relations, function, and constant symbols of prescribed
arity.

42It is unclear to me whether either semi-hyperbolic plane discussed in this exercise interprets a Euclidean ordered field.
43this process is, at best, not well-understood for second order logic. So our analysis is restricted to Euclid and Hilbert’s systems.

But we do develop some of SMSG’s approach since it is widely used.
44If there are no function symbols, the vocabulary is called relational; if there are no relations it is called algebraic.
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2. Terms (expressions) are defined by induction.

(a) A variable or a constant is a term.

(b) If f is an n-ary function symbol and t1, . . . tn are terms then f(t1, . . . tn) is a term.

3. well-formed formulas (wff) are defined by induction.

(a) Atomic formulas

i. If t1, t2 are terms then (t1 = t2) is an atomic formula.
ii. If t1, . . . tn are terms and R is an n-ary relation symbol then R(t1, . . . tn) is an atomic

formula.
For example, if < is a binary relation symbol, 0 a constant and x a variable, x < 0 is an
atomic formula.

(b) If φ and ψ are wffs

i. ¬φ is a wff;
ii. (φ ∧ ψ) is a wff;

iii. (φ ∧ ψ) is a wff;
iv. (∃vi)φ and (∀vi)φ are wffs.

4. A τ -structure45 is a set A and for each

(a) constant symbol c ∈ τ , an element cA of A;

(b) n− ary relation symbol R ∈ τ a relation RA ⊂ An;

(c) n− ary function symbol f ∈ τ a function f :An → A.
For example, the rational field (Q,+,×, 0, 1) is τ structure for the vocabulary +,×, 0, 1.

5. To define truth of τ -sentences in an τ -structure A:

(a) Expand τ to τ∗ by adding a constant symbol ca for each a ∈ A. (That is, cAa = a.)

(b) The denotation tA of terms t is defined by induction.

i. The denotation of a constant c is cA.
ii. The denotation of a term t = f(t1, . . . tn) is tA = fA(tA1 , . . . t

A
n ).

(c) Now truth of a formula φ(t1, . . . , tn) (where the ti are τ∗-terms) is defined by induction:

i. If φ is t1 = t2, A |= φ if tA1 = tA2 .
ii. If φ is R(t1, . . . tn), A |= φ if 〈tA1 , . . . tAn 〉 ∈ RA.

iii. If φ(t1, . . . , tn) is ψ(t1, . . . , tn) ∧ χ(t1, . . . , tn) then A |= φ(t1, . . . , tn) if A |=
ψ(t1, . . . , tn) and A |= χ(t1, . . . , tn).

iv. If φ(t1, . . . , tn) is ¬ψ(t1, . . . , tn) then A |= φ(t1, . . . , tn) if it is not the case that A |=
φ(t1, . . . , tn).

v. If φ(t1, . . . , tn) is (∃vi)ψ(t1, . . . , tn, vi) then A |= φ(t1, . . . , tn) if for some a ∈ A, A |=
ψ(t1, . . . , tn, ca).
For example, the sentence (∃x)(x2 = 1 + 1) is false in the structure (Q,+,×, 0, 1) and
true in the structure C,+,×, 0, 1) (where the QQ and C indicate we are to interpret as the
rational and complex field respectively.

45A structure for a relational vocabulary is called a relational structure; a structure for an algebraic vocabulary is called an algebra.
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(d) The sentence φ is valid if it is true in every structure. For every M , M |= φ.

(e) The sentence φ is a logical consequence of the sentence ψ if for every M , if M |= ψ then
M |= φ.

If a sentence φ is true in a structure M , we say M is a model of φ. If M satisfies all axioms of a theory
T , M is a model of φ.

Theorem 12.2 (Completeness and Compactness). Gödel’s Completeness theorem For any sentence of
first order logic and any T :

T |= φ↔ T ` φ.

Compactness theorem For any and constants a φn(a) and collection of sentences φn(a).

If there is a model M for each N < ω, there is an aN , and MN such that M |=
∧

n<N φn(aN ) then
there is a model Mω and tuple aω such that Mω |=

∧
n<ω φn(aN ).

Definition 12.3 (Proof system). We now specify a proof system for first order logic. However, we not
recommend proofs in such a formal system in a GeT course.

The key point is that the arguments in Euclid generally follow a simple form. A configuration
of a finite number points is given and one must show that there exist further points satisfying a fur-
ther configuration. That is the theorem can be expressed by formula (∀x1, . . . xn)θ(x1, . . . xn) →
∃(y1, . . . ym)ψ(x1, . . . xn, y1, . . . ym). For more detail see [ADM09, §2.4] or [Mue06, p 11-14].

Logical Axioms

1. Any sentence that is true in every τ structure (a tautology);

2. The equality axioms;

3. (∀x)φ→ φxt (if t is substitutable for x in φ);

4. (∀x)(φ→ ψ)→ [(∀x)φ→ (∀x)ψ];

5. φ→ (∀x)φ(x) (if x not free in φ).

Inference rule
(Modus Ponens): From φ and φ→ ψ, infer ψ.

This is slightly altered version of the definition of interpretation in [Sho67]

Definition 12.4 (Formal definition of interpretation). 1. We say that I is an interpretation of L in L′,
where L and L′ are first-order languages, if I is a function such that

i there is a universe for the image of I , represented by a unary predicate symbol UI (or formula) of
L′ ;

ii for each n-ary function symbol f of L , a corresponding symbol fI of L′;

iii for each n-ary predicate symbol P of L (with the exception of =, which is generally taken to be a
logical symbol), a corresponding symbol PI of L′.

2. Moreover, we say that I is an interpretation of L in a theory T ′ if I is an interpretation of L in the
language L′ of T ′ and also:
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i T ′ ` (∃x)UI(x) (it proves that the domain is non-empty);

ii for each f ∈ L , T ′ ` (UI(x1)∧ . . .∧UI(xn)→ UI(fI(I(x1 . . . , xn))) (it proves that the domain
is closed under functions).

3. Now, if φ is a formula ofL and I an interpretation ofL inL′, then we can define for φ its interpretation
in L′ , φI . We start by defining a formula φI of L′ which is obtained by starting with φ and replacing
each symbol of the original language by its interpretation in L′ (e.g., if φ is f(x) = y , then we replace
f by fI to obtain fI(x) = y), and then relativizing the existential quantifiers to the domain (i.e. replace
every (∃x)ψ by (∃x)(UI(x) ∧ ψ). As the last step, if x1 . . . , xn are the free variables of φ , set φI to
be (UI(x1) ∧ . . . ∧ UI(xn)→ φI .

4. Finally, an interpretation of a theory T in a theory T ′ is an interpretation I of the language of T in T ′

such that T ′ ` φI for every nonlogical axiom (i.e. an L-sentence φ that is not universally valid that
has been taken as axiom of T ).

We have noticed that there are first order formulas defining the Cartesian plane over a field and, more
surprisingly, conversely if the plane satisfies HP5. We say that the theory of fields and the theory of Hilbert
planes satisfying the 5th postulate are mutually interpretable. As emphasized in [Mak19] a stronger con-
nection is more useful: the theories are said to be bi-interpretable if the defining maps are inverses of each
other. In particular, bi-interpretation preserves decidability while mutual interpretability may not.[Ena13]
provides a basic exposition and the original definitions of interpretability [TMR68] is quite readable.
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