Assignment III: due Jan. 26

John T. Baldwin

January 22, 2009

Winter Quarter Algebra Initiative

1. In-out machines. Provide a rule for each of the following: Write the rule in an English sentence. Then fill in any question marks in the table.

In	Out	
2	-6	
-4	12	
1.2	-3.6	
?	2.7	
-3	?	
?	12	
?	2π	
Ť		
In		Out
baby		Α
John		Ι
market		S
bandana		Ο
aardvaark		s
bobbin		2

2. Provide at least three rules for each of the following two tables.

In	Out		
1	3		
2	5		
-			
In	Out		
5	16		
-2	-5		
Please turn over.			

3. Solve the system of equations:

$$3x + 2y = 7 \tag{1}$$

$$6x + 4y = 5 \tag{2}$$

4. A function is given by the rule $y = 3x^2 - 4x + 2$. Here is a partial in-out table. Use the trace and zoom features of your graphing calculator to fill in the blanks. Where the out value is given find all possible in-values that will give the desired out. If there aren't any, say none. Give answers to two decimal places.

