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Teaching and Learning Functions
Mindy Kalchman and Kenneth R. Koedinger

This chapter focuses on teaching and learning mathematical functions.1

Functions are all around us, though students do not always realize this. For
example, a functional relationship between quantities is at play when we
are paying for gasoline by the gallon or fruit by the pound. We need func-
tions for financial plans so we can calculate such things as accrued income
and interest. Functions are important as well to interpretations of local and
world demographics and population growth, which are critical for economic
planning and development. Functions are even found in such familiar set-
tings as baseball statistics and metric conversions.

Algebraic tools allow us to express these functional relationships very
efficiently; find the value of one thing (such as the gas price) when we know
the value of the other (the number of gallons); and display a relationship
visually in a way that allows us to quickly grasp the direction, magnitude,
and rate of change in one variable over a range of values of the other. For
simple problems such as determining gas prices, students’ existing knowl-
edge of multiplication will usually allow them to calculate the cost for a
specific amount of gas once they know the price per gallon (say, $2) with no
problem. Students know that 2 gallons cost $4, 3 gallons cost $6, 4 gallons
cost $8, and so on. While we can list each set of values, it is very efficient to
say that for all values in gallons (which we call x by convention), the total
cost (which we call y by convention), is equal to 2x. Writing y = 2x is a
simple way of saying a great deal.

As functional relationships become more complex, as in the growth of a
population or the accumulation of interest over time, solutions are not so
easily calculated because the base changes each period. In these situations,
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algebraic tools allow highly complex problems to be solved and displayed
in a way that provides a powerful image of change over time.

Many students would be more than a little surprised at this description.
Few students view algebra as a powerful toolkit that allows them to solve
complex problems much more easily. Rather, they regard the algebra itself
as the problem, and the toolkit as hopelessly complex. This result is not
surprising given that algebra is often taught in ways that violate all three
principles of learning set forth in How People Learn and highlighted in this
volume.

The first principle suggests the importance of building new knowledge
on the foundation of students’ existing knowledge and understanding. Be-
cause students have many encounters with functional relationships in their
everyday lives, they bring a great deal of relevant knowledge to the class-
room. That knowledge can help students reason carefully through algebra
problems. Box 8-1 suggests that a problem described in its everyday mani-
festation can be solved by many more students than the same problem
presented only as a mathematical equation. Yet if the existing mathematics
understandings students bring to the classroom are not linked to formal
algebra learning, they will not be available to support new learning.

The second principle of How People Learn argues that students need a
strong conceptual understanding of function as well as procedural fluency.
The new and very central concept introduced with functions is that of a
dependent relationship: the value of one thing depends on, is determined
by, or is a function of another. The kinds of problems we are dealing with
no longer are focused on determining a specific value (the cost of 5 gallons
of gas). They are now focused on the rule or expression that tells us how
one thing (cost) is related to another (amount of gas). A “function” is for-
mally defined in mathematics as “a set of ordered pairs of numbers (x, y)
such that to each value of the first variable (x) there corresponds a unique
value of the second variable (y).”2  Such a definition, while true, does not
signal to students that they are beginning to learn about a new class of
problems in which the value of one thing is determined by the value of
another, and the rule that tells them how they are related.

Within mathematics education, function has come to have a broader
interpretation that refers not only to the formal definition, but also to the
multiple ways in which functions can be written and described.3  Common
ways of describing functions include tables, graphs, algebraic symbols, words,
and problem situations. Each of these representations describes how the
value of one variable is determined by the value of another. For instance, in
a verbal problem situation such as “you get two dollars for every kilometer
you walk in a walkathon,” the dollars earned depend on, are determined by,
or are a function of the distance walked. Conceptually, students need to
understand that these are different ways of describing the same relationship.
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Good instruction is not just about developing students’ facility with per-
forming various procedures, such as finding the value of y given x or creat-
ing a graph given an equation. Instruction should also help students de-
velop a conceptual understanding of function, the ability to represent a
function in a variety of ways, and fluency in moving among multiple repre-
sentations of functions. The slope of the line as represented in an equation,
for example, should have a “meaning” in the verbal description of the rela-
tionship between two variables, as well as a visual representation on a graph.

The third principle of How People Learn suggests the importance of
students’ engaging in metacognitive processes, monitoring their understand-
ing as they go. Because mathematical relationships are generalized in alge-
bra, students must operate at a higher level of abstraction than is typical of
the mathematics they have generally encountered previously. At all levels of
mathematics, students need to be engaged in monitoring their problem solv-
ing and reflecting on their solutions and strategies. But the metacognitive
engagement is particularly important as mathematics becomes more abstract,
because students will have few clues even when a solution has gone terribly
awry if they are not actively engaged in sense making.

When students’ conceptual understanding and metacognitive monitor-
ing are weak, their efforts to solve even fairly simple algebra problems can,
and often do, fail. Consider the problem in Figure 8-1a. How might students
approach and respond to this problem? What graph-reading and table-build-
ing skills are required? Are such skills sufficient for a correct solution? If
students lack a conceptual understanding of linear function, what errors
might they make? Figure 8-1b shows an example student solution.

What skills does this student exhibit? What does this student understand
and not understand about functions? This student has shown that he knows
how to construct a table of values and knows how to record in that table
coordinate points he has determined to be on the graph. He also clearly
recalls that an algorithm for finding the slope of the function is dividing the
change in y(∆y) by the change in x(∆x). There are, however, significant
problems with this solution that reveal this student’s weak conceptual un-
derstanding of functions.

Problem: Make a table of values that would produce the function
seen on page 356.

First, and most superficially, the student (likely carelessly) mislabeled
the coordinate for the y-intercept (0, 3) rather than (0, –3). This led him to
make an error in calculating ∆y by subtracting 0 from 3 rather than from –3.
In so doing, he arrived at a value for the slope of the function that was
negative—an impossible solution given that the graph is of an increasing
linear function. This slip, by itself, is of less concern than the fact that the
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BOX 8-1 Linking Formal Mathematical Understanding to Informal
Reasoning

Which of these problems is most difficult for a beginning algebra
student?

Story Problem

When Ted got home from his waiter job, he multiplied his hourly wage by
the 6 hours he worked that day. Then he added the $66 he made in tips
and found he had earned $81.90. How much does Ted make per hour?

Word Problem

Starting with some number, if I multiply it by 6 and then add 66, I get 81.9.
What number did I start with?

Equation

Solve for x:
x * 6 + 66 = 81.90

Most teachers and researchers predict that students will have more diffi-
culty correctly solving the story or word problem than the equation.4  They
might explain this expectation by saying that a student needs to read the
verbal problems (story and word) and then translate them into the equa-
tion. In fact, research investigating urban high school students’ perfor-
mance on such problems found that on average, they scored 66 percent
on the story problem, 62 percent on the word problem, and only 43 per-
cent on the equation.5  In other words, students were more likely to solve
the verbal problems correctly than the equation. Investigating students’
written work helps explain why.

Students often solved the verbal problems without using the equa-
tion. For instance, some students used a generate-and-test strategy: They
estimated a value for the hourly rate (e.g., $4/hour), computed the corre-
sponding pay (e.g., $90), compared it against the given value ($81.90),
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and repeated as needed. Other students used a more efficient unwind or
working backwards strategy. They started with the final value of 81.9 and
subtracted 66 to undo the last step of adding 66. Then they took the
resulting 15.9 and divided by 6 to undo the first step of multiplying by 6.
These strategies made the verbal problems easier than expected. But
why were the equations difficult for students? Although experts in alge-
bra may believe no reading is involved in equation solving, students do in
fact need to learn how to read equations. The majority of student errors
on equations can be attributed to difficulties in correctly comprehending
the meaning of the equation.6  In the above equation, for example, many
students added 6 and 66, but no student did so on the verbal problems.

Besides providing some insight into how students think about alge-
braic problem solving, these studies illustrate how experts in an area such
as algebra may have an “expert blind spot” for learning challenges begin-
ners may experience. An expert blind spot occurs when someone skilled
in an area overestimates the ease of learning its formalisms or jargon and
underestimates learners’ informal understanding of its key ideas. As a
result, too little attention is paid to linking formal mathematical under-
standing to informal reasoning. Looking closely at students’ work, the
strategies they employ, and the errors they make, and even comparing
their performance on similar kinds of problems, are some of the ways we
can get past such blind spots and our natural tendency to think students
think as we do.

Such studies of student thinking contributed to the creation of a tech-
nology-enhanced algebra course, originally Pump Algebra Tutor and now
Cognitive Tutor Algebra.7  That course includes an intelligent tutor that
provides students with individualized assistance as they use multiple rep-
resentations (words, tables, graphs, and equations) to analyze real-world
problem situations. Numerous classroom studies have shown that this
course significantly improves student achievement relative to alternative
algebra courses (see www.carnegielearning.com/research). The course,
which was based on basic research on learning science, is now in use in
over 1,500 schools.
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FIGURE 8-1

a

b

student did not recognize the inconsistency between the positive slope of
the line and the negative slope in the equation. Even good mathematicians
could make such a mistake, but they would likely monitor their work as they
went along or reflect on the plausibility of the answer and detect the incon-
sistency. This student could have caught and corrected his error had he
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acquired both fluency in interpreting the slope of a function from its equa-
tion (i.e., to see that it represents a decreasing function) and a reflective
strategy for comparing features of different representations.

A second, more fundamental error in the student’s solution was that the
table of values does not represent a linear function. That is, there is not a
constant change in y for every unit change in x. The first three coordinates in
the student’s table were linear, but he then recorded (2.5, 0) as the fourth
coordinate pair rather than (3, 0), which would have made the function
linear. He appears to have estimated and recorded coordinate points by
visually reading them off the graph without regard for whether the final
table embodied linearity. Furthermore, the student did not realize that the

equation he produced, y x= –

.
–

3

2 5
3 , translates not only into a decreasing line,

but also into a table of numbers that decreases by 
–

.

3

2 5
for every positive unit

change in x.
At a surface level, this student’s solution reflects some weaknesses in

procedural knowledge, namely, getting the sign wrong on the y-intercept
and imprecisely reading x-y coordinates off the graph. More important, how-
ever, these surface errors reflect a deeper weakness in the student’s concep-
tual understanding of function. The student either did not have or did not
apply knowledge for interpreting key features (e.g., increasing or decreas-
ing) of different function representations (e.g., graph, equation, table) and
for using strategies for checking the consistency of these interpretations (e.g.,
all should be increasing). In general, the student’s work on this problem
reflects an incomplete conceptual framework for linear functions, one that
does not provide a solid foundation for fluid and flexible movement among
a function’s representations.

This student’s work is representative of the difficulties many secondary-
level students have with such a problem after completing a traditional text-
book unit on functions. In a study of learning and teaching functions, about
25 percent of students taking ninth- and eleventh-grade advanced math-
ematics courses made errors of this type—that is, providing a table of values
that does not reflect a constant slope—following instruction on functions.8

This performance contrasts with that of ninth- and eleventh-grade math-
ematics students who solved this same problem after receiving instruction
based on the curriculum described in this chapter. This group of students
had an 88 percent success rate on the problem. Because these students had
developed a deeper understanding of the concept of function, they knew
that the y-values in a table must change by the same amount for every unit
change in x for the function to be linear. The example in Figure 8-1c shows
such thinking.
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Problem: Make a table of values that would produce the function
seen above.

This student identified a possible y-intercept based on a reasonable
scale for the y-axis. She then labeled the x- and y-axes, from which she
determined coordinate pairs from the graph and recorded them in a table of
values. She determined and recorded values that show a constant increase
in y for every positive unit change in x. She also derived an equation for the
function that not only corresponds to both the graph and the table, but also
represents a linear relationship between x and y.

How might one teach to achieve this kind of understanding? The
goal of this chapter is to illustrate approaches to teaching functions that
foster deep understanding and mathematical fluency. We emphasize the
importance of designing thoughtful instructional approaches and curricula

FIGURE 8-1

c
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that reflect the principles of How People Learn (as outlined in Chapter 1), as
well as recent research on what it means to learn and understand functions
in particular. We first describe our approach to addressing each of the three
principles. We then provide three sample lessons that emphasize those prin-
ciples in sequence. We hope that these examples provide interesting activi-
ties to try with students. More important, these activities incorporate impor-
tant discoveries about student learning that teachers can use to design other
instructional activities to achieve the same goals.

ADDRESSING THE THREE PRINCIPLES

Principle #1: Building on Prior Knowledge

Principle 1 emphasizes the importance of students and teachers con-
tinually making links between students’ experiences outside the mathemat-
ics classroom and their school learning experiences. The understandings
students bring to the classroom can be viewed in two ways: as their every-
day, informal, experiential, out-of-school knowledge, and as their school-
based or “instructional” knowledge. In the instructional approach illustrated
here, students are introduced to function and its multiple representations by
having their prior experiences and knowledge engaged in the context of a
walkathon. This particular context was chosen because (1) students are fa-
miliar with money and distance as variable quantities, (2) they understand
the contingency relationship between the variables, and (3) they are inter-
ested in and motivated by the rate at which money is earned.

The use of a powerful instructional context, which we call a “bridging
context,” is crucial here. We use this term because the context serves to
bridge students’ numeric (equations) and spatial (graphic) understandings
and to link their everyday experiences to lessons in the mathematics class-
room. Following is an example of a classroom interaction that occurred
during students’ first lesson on functions, showing how use of the walkathon
context as an introduction to functions in multiple forms—real-world situa-
tion (walkathon), table, graph, verbal (“$1.00 for each kilometer”), situation-
specific symbols ($ = 1 * km), and generic symbolic (y = x * 1)—accom-
plishes these bridging goals. Figures 8-2a through 8-2c show changes in the
whiteboard as the lesson proceeded.

Teacher What we’re looking at is, we’re looking at what
we do to numbers, to one set of numbers, to
get other numbers. . . . So how many of you
have done something like a walkathon? A
readathon? A swimathon? A bikeathon?
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[Students raise their hands or nod.] So most of
you…So I would say “Hi Tom [talking to a
student in class], I’m going to raise money for
such and such a charity and I’m going to walk
ten kilometers.”

Tom  OK.

Teacher Say you’re gonna sponsor me one dollar for
every kilometer that I walk. So that’s sort of the
first way that we can think about a function. It’s
a rule. One dollar for every kilometer walked.
So you have one dollar for each kilometer
[writing “$1.00 for each kilometer” on the
board while saying it]. So then what I do is I
need to calculate how much money I’m gonna
earn. And I have to start somewhere. So at
zero kilometers how much money do I have
Tom? How much are you gonna pay me if I
collapse at the starting line? [Fills in the
number 0 in the left-hand column of a table
labeled “km”; the right-hand column is labeled
“$”.]

Tom  None.

Teacher So Tom, I managed to walk one kilometer
[putting a “1” in the “km” column of the table
of values below the “0”]. . . .

Tom  One dollar.

Teacher One dollar [moving to the graph]. So I’m going
to go over one kilometer and up one dollar
[see Figure 8-2a].

FIGURE 8-2a Graphing a point from the
table: “Over by one kilometer and up by one
dollar.” The teacher uses everyday English
(“up by”) and maintains connection with the
situation by incorporating the units “kilometer”
and “dollar.”
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[Students continue to provide the dollar
amounts for each of the successive kilometer
values. Simple as it is, students are encour-
aged to describe the computation—”I multiply
two kilometers by one to get two dollars.” The
teacher fills in the table and graphs each
coordinate pair. [The board is now as shown in
Figure 8-2b.]

Teacher Now, what I want you to try and do, first I want
you to look at this [pointing to the table that
goes from x = 0 to x = 10 for y = x] and tell me
what’s happening here.

Melissa You, like, earn one dollar every time you go up.
Like it gets bigger by one every time.

Teacher So every time you walk one kilometer you get
one more dollar, right? [Makes “> 1” marks
between successive “$” values in the table—
see Figure 8-2c.] And if you look on the graph,
every time I walk one kilometer I get one more
dollar. [Makes “step” marks on the graph.] So
now I want to come up with an equation, I
want to come up with some way of using this
symbol [pointing to the “km” header in the
left-hand column of the table] and this symbol
[pointing to the “$” header in the right-hand
column of the table] to say the same thing, that
for every kilometer I walk, let’s put it this way,
the money I earn is gonna be equal to one
times the number of kilometers I walk. Some-
one want to try that?

FIGURE 8-2b The teacher and
students construct the table and
graph point by point, and a line
is then drawn.
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Alana Um, kilometers times one equals money. [The
teacher writes “km x 1 = $” and “y = x * 1”;
see Figure 8-2c.]

Teacher So this equation, this table, and this graph are
all the same function. They all mean the same
thing. They all mean that you’re multiplying
each of these numbers (pointing to the values
along the x-axis of the graph) by one to get
new numbers.

Another way of building on students’ prior knowledge is to engage
everyday experiential knowledge. Students frequently know things through
experience that they have not been taught explicitly. They can often solve
problems in ways we do not teach them or expect if, and this is an important
qualification, the problems are described using words, drawings, or nota-
tions they understand. For example, the topic of slope is typically reserved
for ninth-grade mathematics, and is a part of students’ introduction to rela-
tions and functions in general and to linear functions in particular. It is
generally defined as the ratio of vertical distance to horizontal distance, or
“rise to run.” The rise is the change in the vertical distance, and the run is the

change in the horizontal distance so that slope
rise
run

= . Once the equation for a

straight line, y = mx + b , has been introduced, m is defined as the slope of

that line and is calculated using the formula m
y y

x x
= 2 1

2 1

–

– .

For students to understand slope in these definitional and symbolic ways,
they must already have in place a great deal of formal knowledge, including

FIGURE 8-2c The teacher highlights the “up by” amount in the table (“>1” marks), graph (over
and up “step” marks), and symbolic equation (pointing at “*1”).
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the meaning of ratio, coordinate graphing, variables, and subscripts, and
such skills as solving equations in two variables and combining arithmetic
operations. Knowing algorithms for finding the slope of a function, how-
ever, does not ensure that the general meaning of slope will be understood.
As illustrated in Figure 8-1a, a student can know the algorithm for finding
the slope, but not understand that the slope of a line characterizes its relative
steepness on a graph and tells something about the rate of change in covarying,
dependent quantities.

We have found that younger students have intuitive and experiential
understandings of slope that can be used to underpin the formal learning
that involves conventional notations, algorithms, and definitions. To illus-
trate, we gave a class of fifth and sixth graders the following situation:

Jane is in a walkathon. A rule or “function” tells us how much Jane will earn
depending on how many kilometers she walks. We don’t know what the
function is. It is a mystery. We do know that if Jane walks 1 kilometer she
will earn 4 dollars and if she walks 3 kilometers she will earn 8 dollars.

Students were asked to figure out the slope of the function that tells how
much Jane will earn. Half of the students were provided with the formal rise-
over-run ratio definition of slope; the other half were given a definition of
slope that reflected more familiar, student language, being told that the slope
of a function is the amount by which the answer goes up for every change
of one in the start value.

We found that many of these younger students were able to describe
informally the slope of the function given in the story problem by figuring
out how much Jane’s earnings go up by for every kilometer she walks. They
noticed that when Jane walks three kilometers instead of one, she earns four
more dollars; thus she earns two more dollars for every extra kilometer she
walks. In this way, these prealgebra students identified the slope of the
mystery function as 2 without receiving instruction on formal definitions or
procedures. In contrast, students who were given the textbook definition of
slope were not able to determine the slope in this example.

Our point is not that all problems should be phrased in “student lan-
guage.” It is important for students to learn formal mathematics terminology
and abstract algebraic symbolism. Our point, instead, is that using student
language is one way of first assessing what knowledge students are bringing
to a particular topic at hand, and then linking to and building on what they
already know to guide them toward a deeper understanding of formal math-
ematical terms, algorithms, and symbols.

In sum, students’ prior knowledge acts as a building block for the devel-
opment of more sophisticated ways of thinking mathematically. In some
cases, we may underestimate the knowledge and skills students bring to the
learning of functions. Topics and activities we presume to be challenging

Copyright © National Academy of Sciences. All rights reserved.

How Students Learn: Mathematics in the Classroom
http://www.nap.edu/catalog/11101.html

http://www.nap.edu/catalog/11101.html


364 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

and difficult for students may in fact have intuitive or experiential underpin-
nings, and it is important to discover these and use them for formalizing
students’ thinking.

Principle #2: Building Conceptual Understanding,
Procedural Fluency, and Connected Knowledge

The focus of Principle 2 is on simultaneously developing conceptual
understanding and procedural fluency, and helping students connect and
organize knowledge in its various forms. Students can develop surface facil-
ity with the notations, words, and methods of a domain of study (e.g., func-
tions) without having a foundation of understanding. For students to under-
stand such mathematical formalisms, we must help them connect these
formalisms with other forms of knowledge, including everyday experience,
concrete examples, and visual representations. Such connections form a
conceptual framework that holds mathematical knowledge together and fa-
cilitates its retrieval and application.

As described previously, we want students to understand the core con-
cept of a fuctional relationship: that the value of one variable is dependent
on the value of another. And we want them to understand that the relation-
ship between two variables can be expressed in a variety of ways—in words,
equations, graphs, tables—all of which have the same meaning or use the
same “rule” for the relationship. Ultimately, we want students’ conceptual
understanding to be sufficiently secure, and their facility with representing
functions in a variety of ways and solving for unknown variables sufficiently
fluid, that they can tackle sophisticated problems with confidence. To this
end, we need an instructional plan that deliberately builds and secures that
knowledge. Good teaching requires not only a solid understanding of the
content domain, but also specific knowledge of student development of
these conceptual understandings and procedural competencies. The devel-
opmental model of function learning that provides the foundation for our
instructional approach encompasses four levels—0 to 3—as summarized in
Table 8-1. Each level describes what students can typically do at a given
developmental stage. The instructional program is then designed to build
those competences.

Level 0

Level 0 characterizes the kinds of numeric/symbolic and spatial under-
standings students typically bring to learning functions. Initially, the numeric
and spatial understandings are separate. The initial numeric understanding
is one whereby students can iteratively compute within a single string of
whole numbers. That is, given a string of positive, whole numbers such as 0,
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TABLE 8-1  A Developmental Model for Learning Functions

Level General Description Example Tasks and Understandings

0 Students have separate numeric and
spatial understandings.

• Initial numeric understanding: Extend the pattern
students iteratively compute (e.g., 3, 7, 11, 15, ___, ____, ____.
“add 4”) within a string of positive
whole numbers.

• Initial spatial understanding: students Notice in a bar graph of yearly
represent the relative sizes of population figures that each bar is
quantities as bars on a graph and taller than the previous bar.
perceive patterns of qualitative
changes in amount by a left-to-right
visual scan of the graph, but cannot
quantify those changes.

1 Spatial and numeric understandings
are elaborated and integrated,
forming a central conceptual structure.

• Elaboration of numeric understanding: Multiply each number in the sequence
— Iteratively apply a single operation 0, 1, 2, … by 2 to get a set of pairs:

to, rather than within, a string of 0-0, 1-2, 2-4, ….
numbers to generate a second Generalize the pattern and express it
string of numbers. as y = 2x.

— Construct an algebraic expression
for this repeated operation. Notice that a graph of daily plant

• Elaboration of spatial understanding: growth must leave spaces for
— Use continuous quantities along unmeasured Saturday and Sunday

the horizontal axis. values.
— Perceive emergent properties,

such as linear or increasing, in the For every 1 km, a constant “up by” $2
shape of the line drawn between in both the y-column of a table and
points. the y-axis in a graph generates a

• Integration of elaborated linear pattern (spatial) with a slope of
understandings:  2 (numeric). y = 2x can be read

Continued
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— See the relationship between the from, or produced in, both a table
differences in the y-column in a and a graph.
table and the size of the step from
one point to the next in the
associated graph.

• Interpret algebraic representations
both numerically and spatially.

2 • Elaborate initial integrated numeric Look at the function below. Could it
and spatial understandings to create represent y = x – 10? Why or why
more sophisticated variations. not?

• Integrate understanding of y = x and
y = x + b to form a mental structure
for linear functions.

• Integrate rational numbers and
negative integers.

• Form mental structures for other If you think it could not, sketch what
families of functions, such as you think it looks like.
y = xn + b.

3 • Integrate variant (e.g., linear and At what points would the function
nonlinear) structures developed at y = 10x – x2 cross the x axis?
level 2 to create higher-order Please show all of your work.
structures for understanding more-
complex functions, such as
polynomials and exponential and
reciprocal functions.

• Elaborate understanding of graphs
and negative integers to differentiate
the four quadrants of the Cartesian plane.

• Understand the relationship of these
quadrants to each other.

TABLE 8-1  Continued

Level General Description Example Tasks and Understandings
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2, 4, 6, 8, …, students are able to see the pattern of adding 2 to each succes-
sive number. The initial spatial understanding is one whereby students can
represent the relative sizes of quantities as bars on a graph. Students can
easily see differences in the sizes of bars (how tall they are) and can use this
spatial information to draw inferences about associated quantities. Students
can read bar graphs that, for instance, show daily measurements of the
growth of a plant in the classroom. They can see that each bar is taller than
the previous one, that the plant is taller on Friday than on Thursday, but
cannot easily quantify those changes.

Level 1

At level 1, students begin to elaborate and integrate their initial numeric
and spatial understandings of functions. They elaborate their numeric un-
derstanding in two steps. First, whereas students at level 0 can extend a
single sequence of numbers such as 0, 2, 4, 6, …, at level 1 they can operate
on one sequence of numbers to produce a second sequence. For example,
students can multiply each number in the sequence 0, 1, 2, 3, … by 2 and
form the resulting pairs of values: 0-0, 1-2, 2-4, 3-6, …. Students learn to
record these pairs of values in a table and to construct an algebraic equation
for this repeated operation by generalizing the pattern into an equation such
as y = 2x.

Students’ spatial understanding is also improving. They come to under-
stand that maintaining equal distances between values on the x-axis is criti-
cal to having a meaningful graph of a function. They also progress from
understanding graphs with verbal or categorical values along the x-axis,
such as cities (with their populations on the y-axis), to understanding graphs
with quantitative values along the x-axis, such as time quantified as days
(with the height of a plant on each successive day on the y-axis). The ex-
ample of graphing plant growth is an interesting one because it is an activity
at the cusp of this transition. Students initially view values on the x-axis as
categorical, not sequenced (so that Thursday, Friday, Monday is okay). Later
they come to view these values as quantitative, in a sequence with a fixed
distance between the values (such that Thursday, Friday, Monday is not
okay because Saturday and Sunday must be accounted for).

Without being able to view the x-axis as quantitative, students cannot
see graphs as representing the relationship between two changing quanti-
ties. Drawing a line to join the points provides a visual representation of the
relationship between the quantities. The line offers a way of packaging key
properties of the function or pattern of change that can be perceived quickly
and easily. For example, students can see how much earnings change per
kilometer by looking at the steepness of the line.
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As their initial numeric and spatial understandings are elaborated, stu-
dents at level 1 also begin to connect, or integrate, these understandings.
They make connections between tables and graphs of x-y pairs, using one
representation to generate inferences that can be checked by the other. The
overall pattern of a function can be understood both in the size of the
increments in the y-column of the table and in the steepness of the line
moving from one point to another in the graph. The constant “up-by” 1
seen, for example, in Figure 8-2c in the right-hand column of a table is the
same as the constant “up-by” 1 in a line of a graph (see the same figure). As
these views become integrated, students develop a deeper and more flex-
ible understanding of functions, in this case, a linear pattern with a rise of 1.
With this new integrated mental structure for functions, students can sup-
port numeric and spatial understandings of algebraic representations such
as y = 1x.

Grasping why and how the line on a graph maps onto the relationship
described in a word problem or an equation is a core conceptual under-
standing. If students’ understanding is only procedural, they will not be well
prepared for the next level (see Box 8-2). To ensure that students master the
concepts at this level, complex content is avoided. Students are not required
to operate with negative or rational numbers or carry out more than one
operation in a single function (such as multiplying x by any value and add-
ing or subtracting a constant, as in the general y = mx + b form). Such
limiting of these complicating factors is intended to minimize loads on pro-
cessing and working memory, thus enabling students to focus on the es-
sence of the integration of numeric and spatial understandings of function.
Students learn more complex content during levels 2 and 3.

Level 2

As students progress to level 2, they begin to elaborate their initial inte-
grated numeric and spatial understandings. In doing so, they begin to com-
bine operations and develop fluency with functions in the form y = mx + b,
where m and b can be positive or negative rational numbers. They also
work with y = xn + b, where n is a positive whole number, and b is any
positive or negative rational number. For a full elaboration to occur, it is
necessary for students to understand integers and rational numbers and have
facility in computing with both of these number systems. Finally, students
differentiate families of functions to see differences in the shapes and char-
acteristics of linear, quadratic, and cubic functions.
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Level 3

At level 3, students learn how linear and nonlinear terms can be related
and understand the properties and behaviors of the resulting entities by
analyzing these relations. To achieve this understanding, students must have
well-constructed and differentiated models of different sorts of functions,
such as quadratics in the form y = ax2 + bx + c or y = a(x – p)2 + q;
polynomials; and reciprocal, exponential, and growth functions. They must
also have the necessary facility with computational, algebraic, and graphing
operations to interrelate the numeric/symbolic and spatial representations of
these complex functions. Furthermore, students must elaborate their under-
standing of graphs so they differentiate the four quadrants of the Cartesian
plane, understand the relationship of these quadrants to each other, and
relate these quadrants to negative numbers.

Recall Figure 8-1a and the difficulties the student had in producing a
table of values for an increasing linear function with a negative y-intercept.
This student did not recognize, or at least did not acknowledge, why it is
impossible for the given function to have a negative slope and to have a
table of values without a constant rate of change. These are the sorts of
problems that occur when students experience instruction that fails to pro-
mote the development of a sound conceptual framework for functions. Now
consider the solution to the problem in Box 8-3, in which a student intro-
duces a table (without prompting) to help solve a problem about interpret-
ing a graph in terms of an equation.

This student exhibited an integrated concept of function. He generated
a response that showed consistency between the spatial (graph) and
numeric (table and equation) representations of the function. He explained
why the function has a slope of –2 as per its numeric (tabular) and
spatial (graphic) representations and correctly symbolized that rationale in
the equation.

Such integration can be supported in the classroom. For example, through-
out the walkathon classroom exchange reported earlier, the teacher is mov-
ing fluidly and rapidly between numeric and spatial representations of a
function (the table and equation and the graph, respectively). Such move-
ment helps students simultaneously build understandings of each of these
representations in isolation, and of the integrated nature of the representa-
tions in particular and the concept in general. This integration helps students
begin to understand and organize their knowledge in ways that facilitate the
retrieval and application of relevant mathematical concepts and procedures.

If students’ numeric and spatial understandings are not integrated,
they may not notice when a conclusion drawn from one understanding is
inconsistent with a conclusion drawn from another. The inconsistencies
found in the student’s work in Figure 8-1a illustrate such a lack of reflective
recognition.
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BOX 8-2 The Devil’s in the Details: The 3-Slot Schema for Graphing
a Line

What students glean from instruction is often very different from what
we as teachers intend. This observation is nicely illustrated by the re-
search of Schoenfeld and colleagues.9  They detail the surprising misun-
derstandings of a 16-year old advanced algebra student who is grappling
with conceptual questions about equations and graphs of linear functions.

Most standard algebra instruction is intended to guide students to-
ward developing what Schoenfeld and colleagues10  call the “2-slot
schema” for understanding and graphing an equation for a line. This
schema says that knowing the slope of a line and its y-intercept enables
one to obtain a complete description of the line, both graphically and
algebraically. Call the line L; let its slope be m and its y-intercept b. Alge-
braically, the line L has equation y = mx + b if and only if the line has slope
m and y-intercept b. Graphically, the line L passes through the point (0, b)
and rises m units vertically for each unit it traverses horizontally.

The student in Schoenfeld’s study, called IN, was relatively sophisti-
cated in understanding aspects of the above schema. However, IN’s knowl-
edge was not fully integrated, and she exhibited a surprising misunder-
standing. She initially believed that three quantities must be known to
graph an equation of a line: (1) slope, (2) y-intercept, and (3) x-intercept.
After having solved the equation 2 = 4x + 1 to get x = 1/4, she was asked
to the graph the function 4x + 1 on the right side of this equation. She
responded as follows: “the slope, which is 4, . . . the y-intercept, which is
1,…and…the x-intercept, which is 1/4, so we’ve found everything.” Note
that IN said that to find “everything,” she needed the slope, y-intercept,
and x-intercept. In other words, she appeared to have a 3-slot schema for
understanding and graphing a linear equation instead of the 2-slot schema
described above.

Clearly this student had received extensive instruction in linear func-
tions. For instance, in an earlier exchange, when asked for an equation of

Principle #3: Building Resourceful, Self-Regulating
Problem Solvers

As discussed above, teaching aimed at developing robust and fluent
mathematical knowledge of functions should build on students’ existing real-
world and school knowledge (Principle 1) and should integrate procedural
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a straight line, she immediately said, “y = mx + b.” However, IN lacked a
well-integrated understanding of the relationships between the features
of the equation and graphical forms of a line. Schoenfeld and colleagues11

explain:
When a person knowledgeable about the domain determines that

the slope of a particular line is some value (say, 1. . .) and that its intercept
is some other value (say, 3), then the job is done. The equation of the line
must be y = (1)x + 3. IN had no such procedure. Although she believed
that the slope, x-intercept, and y-intercept were all important (and she
could read the values of the slope and y-intercept off equations of the
form y = mx + b), she did not have a stable procedure for determining the
values of those entities from a graph and did not know what to do with
the values when she had them.

As other researchers have shown,12  learners often struggle to tell
the difference between the surface features of a subject, which are easy
to see but can be misleading, and the deep features, which are difficult to
see but are needed for understanding and accurate performance. In this
case, three “entities” or aspects of the graph of a line stood out when IN
looked at a graph: namely, where it crossed the x-axis, where it crossed
the y-axis, and the steepness of the line. All three are important, but IN
had the surface understanding that all three are necessary. She appeared
to lack the deeper understanding that only two of these three are needed
to draw a line. She did not understand how using the y-intercept and
slope, in particular, facilitate an efficient graphing strategy because they
can be read immediately off the standard form of an equation.

Schoenfeld and colleagues’ fine-grained analysis of learning nicely
illustrates how subtle and easily overlooked misconceptions can be—even
among our best students.13

skill and conceptual understanding (Principle 2). However, instruction should
assist students not only in thinking with mathematical procedures and con-
cepts, but also in thinking about procedures and concepts and in reflecting
on and articulating their own thinking and learning. This kind of thinking
about thinking, or metacognition, is the focus of Principle 3. Encouraging
students to reflect on and communicate their ideas about functions supports

Copyright © National Academy of Sciences. All rights reserved.

How Students Learn: Mathematics in the Classroom
http://www.nap.edu/catalog/11101.html

http://www.nap.edu/catalog/11101.html


372 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

BOX 8-3 An Integrated Understanding of Functions

them in making the connections among representations that are necessary
for flexible, fluent, and reliable performance.

A particularly important type of metacognitive thinking in mathematics
is coordinating conclusions drawn from alternative mathematical represen-
tations or strategies. Teachers will recognize one form of such coordination
in the well-known recommendation that students solve problems in more
than one way (e.g., add up and add down) to check whether the same
answer is found. A more subtle form of such coordination was exemplified
in the earlier discussion of desired student performance on the assessment
item shown in Figure 8-1a. In this example, good metacognitive thinking
was not about checking the consistency of numeric answers obtained using
different strategies, but about checking the consistency of verbal interpreta-
tions (e.g., increasing vs. decreasing) of different representations. In other
words, we want to encourage students to think about problems not only in
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multiple ways (strategies), but also with multiple tools (representations),
and to draw conclusions that are not only quantitative (numeric answers),
but also qualitative (verbal interpretations).

Supporting metacognitive thinking and attitudes goes beyond reflection
and coordination of alternative mathematical representations and strategies.
It includes creating a classroom atmosphere in which students feel comfort-
able to explore, experiment, and take risks in problem solving and learning.
It also includes helping students develop a tolerance for the difficulties math-
ematics sometimes presents and a will to persevere when, for example, they
are unable to detect the pattern in the table of values that identifies the
relationship between x and y in a particular function. Yet another type of
instructional support for metacognitive thinking involves helping students
become better help seekers. Students need to learn to recognize when they
have reached the limits of their understanding and to know how to obtain
the support they need, including asking the teacher or a fellow student;
consulting reference materials; and using such tools as computer software,
the Internet, or a graphing calculator.

TEACHING FUNCTIONS FOR UNDERSTANDING
Good teaching requires more than knowledge of the content to be taught

and of a developmental model for how students acquire an understanding
of that content. It also requires a set of instructional strategies for moving
students along that developmental pathway and for addressing the obstacles
and opportunities that appear most frequently along the way. Below we
describe a unit of instruction, based on the developmental model described
above, that has been shown experimentally to be more effective than tradi-
tional instruction in increasing understanding of functions for eighth and
tenth graders.14  In fact, sixth-grade students taught with this instructional
approach were more successful on a functions test than eighth and tenth
graders who had learned functions through conventional instruction. At the
secondary level, tenth graders learning with this approach demonstrated a
deeper understanding of complex nonlinear functions. For instance, they
performed significantly better on a test item requiring them to draw a “quali-
tative” graph (no scale on the axes) of the function y = x3 in relation to a
given graph of y = x4.

Curriculum for Moving Students Through the Model

This section summarizes the key features and activities of a curriculum
that was developed for moving students through the four-level learning se-
quence described above. We believe such theory-based instruction encour-
ages students (1) to build on and apply their prior knowledge (Principle 1),
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(2) to construct an integrated conceptual framework for understanding func-
tions (principle 2), and (3) to apply metacognitive skills to their learning
(principle 3). An overview of this curriculum is presented in Table 8-2, fol-
lowed by a more detailed description. Example lessons are provided in the
next section.

The curricular sequence we suggest has been used effectively with stu-
dents in sixth, eighth, tenth, and eleventh grades. Because timetables and
scheduling vary from school to school and from grade to grade, the amount
of material per lesson will also vary depending on the available class time.
This unit requires approximately 650 minutes of class time to complete. We
recommend that it be taught as a whole and in the sequence suggested,
even if students are in an upper secondary-level grade and require the more
advanced level 3 material. We emphasize implementing the full sequence of
topics because the concepts addressed in the level 3 material are supported
by a deep and flexible understanding of the ideas found in the level 1 and 2
material, an understanding that is often insufficiently developed in earlier
grades. Students in the senior grades will likely move more quickly through
the beginning part of the unit than will junior students, and the extra time
allotted for the unit can then be used for working through more-advanced
ideas that are likely beyond younger students’ capabilities.

The instructional approach we are suggesting is different from some
more traditional approaches in many ways. First, the latter approaches often
use different contexts or situations for introducing the individual topics within
the domain, rather than the single bridging context of the walkathon we use.
Within one curriculum, for example, the gradient of a hill may be used for
introducing slope, and fixed cost in production may be used for introducing
y-intercept. Mixing contexts can make understanding y = mx + b as an
integrated concept more difficult than is the case if slope and y-intercept are
introduced within the same context.

The use of multiple representations is another significant feature of the
suggested curriculum, one that again distinguishes it from more traditional
approaches. In many traditional approaches, instruction may be focused on
a single representation (e.g., equation or graph) for weeks before multiple
representations are related. In our curricular approach, tables, graphs, equa-
tions, and verbal rules are copresented within seconds, and students are
encouraged to see them as equivalent representations of the same math-
ematical relationship. Emphasis is placed on moving among these represen-
tations and on working to understand how they relate to each other.

Our approach also engages students in the construction of functional
notation, and thus helps them build notations and meanings for such con-
structs as slope and y-intercept into equations. This approach contrasts with
many existing curricula, which give students the formal notation and then
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focus on introducing them to procedures for finding, for example, the slope
of a linear function or the vertex of a quadratic function. Over the course of
our instruction, students progressively formalize their own initial notations
until those notations correspond with conventional general equations, such
as y = mx + b or y = ax2 + bx + c.

Finally, the kinds of follow-up activities we suggest may differ from
those of more traditional approaches. We suggest activities that allow stu-
dents to remain situated in the context of instruction for the first part of the
unit (that is, related to a walkathon) until they are confident and competent
with the concepts on a more abstract basis. Then, when students move to
the computer environment, they engage in activities in which no new con-
cepts are introduced at first. Rather, students have time to consolidate the
individual concepts addressed in the first part of the unit, and then move on
to more challenging activities that advance their thinking and understanding
in the domain. These more challenging activities involve the addition of new
features to familiar structures. For example, the left-hand quadrants of the
Cartesian plane are eventually included in activities, and linear terms are
added to y = x2 + b to generate equations in the form y = ax2 + bx + c.
Students also give presentations on a particular kind of function (e.g., linear,
quadratic, reciprocal, cubic) to their classmates. In these presentations, stu-
dents share their understanding of and expertise in key characteristics and
behaviors of these functions.

Example Lessons

In the following sections, we elaborate on three specific lessons that
highlight the role of the three principles of How People Learn in the curricu-
lum described in Table 8-2. Although we do not provide a complete descrip-
tion of these lessons, the example activities should be sufficient to suggest
how the lessons might be used in other classrooms. The three lessons and
their companion activities illustrate the principles of How People Learn in
three key topic areas: slope, y-intercept, and quadratic functions. Example
lesson 1, “Learning Slope,” illustrates principle 1, building on students’ prior
knowledge. Example lesson 2, “Learning y-intercept,” illustrates principle 2,
connecting students’ factual/procedural and conceptual knowledge. Example
lesson 3, “Operating on y = x2,” illustrates principle 3, fostering reflective
thinking or metacognition in students. Although each of the selected lessons
is used to highlight one of the principles in particular, the reader should
keep in mind that all three principles interact simultaneously throughout
each lesson.
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TABLE 8-2 Suggested Curricular Sequence

Topic Description Activities

Level 1
Introduction The walkathon bridging context Student partners each invent at

is introduced. Students record least two of their own
in tables the money earned for sponsorship arrangements, for
each kilometer walked and plot which their partner constructs
each pair of values for a variety tables, graphs, and equations.
of rules. Using kilometers and
dollars, an equation is
constructed based on the rule
of sponsorship.

Slope Slope is introduced as the Students are asked to find the
constant numeric up-by (or slope of several different
down-by) amount between functions expressed in tables,
successive dollar values in a graphs, and equations.
table or a graph. It is a relative
measure of the steepness of a
function. It is the amount by
which each kilometer (x – value)
is multiplied.

y-Intercept y-Intercept is introduced as the Students invent two linear
“starter offer,” that is, a fixed functions that allow them to earn
starting bonus students receive exactly $153.00 after walking 10
before the walkathon begins. It kilometers. Students record the
affects only the vertical starting slope and y-intercept of each
point of the numeric sequence function and explain how the
and graph. It does not affect the y-intercept of each function can
steepness or shape of the line. be found in its table, graph, and

equation.
Curving Nonlinear functions are introduced Students are asked to decide which
functions as those having up-by amounts of four functions expressed in

that increase (or decrease) after tables are nonlinear and to explain
each kilometer walked. They are their reasoning. They are also
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derived by multiplying the asked to write an equation for and
kilometers (x) by itself at least . to sketch and label the graph of
once The more times x is each function. Students are
multiplied by itself, the greater asked to come up with a curved-
is the difference between line function for earning $153.00
dollar values and thus the over 10 kilometers.
steeper the curve.

Levels 2 and 3
Computer Level 2 students use spreadsheet Students change the steepness,
activities technology and prepared files y-intercept, and direction of y = x

and activity sheets to consolidate and y = x2 to make the function
and extend the understandings go through preplotted points.
they constructed about slope, They record the numeric,
y-intercept, and linearity in the algebraic, and graphic effects of
first part of the curriculum. Level their changes. They also invent
3 extensions include working in functions with specific
all four quadrants to transform attributes, such as parallel to
quadratic and cubic functions y = 4x and a y-intercept below
and to explore the properties, the x-axis, or an inverted parabola
behaviors, and characteristics of that is compressed and in the
exponential, reciprocal, and other lower left-hand quadrant.
polynomial functions.

Presentations Groups of students investigate Groups of students use computer-
and then prepare a presentation generated output of graphs,
about a particular type of function. equations, and tables to illustrate
Presentations stimulate a particular type of function’s
discussion and summarizing of general properties and behaviors.
key concepts and serve as a Students give presentations
partial teacher assessment for about their function and share
evaluating students’ post- their expertise with classmates.
instruction understanding about
functions.

TABLE 8-2 Continued

Topic Description Activities
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Example Lesson 1: Learning Slope

The classroom interaction recounted below took place during students’
first lesson on slope. The students had already worked through the con-
struction of representations for the introductory rule of the walkathon—
earning one dollar for every kilometer walked. In this interaction we can see
how Katya quickly grasps the idea of slope as relative steepness, as defined
by the variable relationship between two quantities (distance walked and
money earned in this case):

Teacher I want to think of a way, let’s see, Katya, how
might you sponsor me that would make a line
that is steeper than this [y = x is already drawn
on graph, as in Figure 8-2b]?

Katya Steeper? Alright . . . every kilometer you walk
you get two dollars.

Teacher Two dollars. So let’s try that. So at zero
kilometers how much am I going to have?

Katya At zero kilometers you’ll have zero.

Teacher At one?

Katya You’ll have two.

Teacher And what happens at ten?

Katya At ten you’ll have twenty.

Teacher So Katya, what have you done each time?

Katya: I’ve just multiplied by two.

Teacher You’ve multiplied each one of these [pointing
to the numbers in the left column of the table]
by two, right? Zero times two, one times two
[moving finger back and forth between
columns]. If I graph that, where’s it going to
start, Katya?

Katya It’s going to start at zero.

Teacher So at zero kilometers, zero money. At one?

Katya At one it’s going to go to two.

Teacher At two it’s going to go to?

Katya Four.

Teacher Over two up to four. At three?

Katya It’s going to go to six.

Teacher What do you see on the graph? What do you
see happening?
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Katya It’s going higher. It’s steeper than the other
one.

Teacher So it’s steeper and it’s going up by how much?

Katya Two.

Teacher So Katya, since this is your function, what
would the equation for this function be?

Katya Kilometers times two equals money.

Teacher That’s absolutely right. And what do you notice
about these values [pointing to dollar values in
the table and making “>“ marks between
successive values]?

Katya They’re going up by 2.

The Lesson. The lesson on slope is the second lesson suggested in the
overall sequence of instruction, after the walkathon has been introduced. It
requires about two class periods, or 90 minutes. We introduce slope as the
constant numeric up-by amount that is found between successive y-values
for every unit change in x. This up-by amount can be seen in a function’s
table or its graph. The up-by terminology was invented by students who
were asked to describe the meaning of slope using their own words. When
introducing this up-by idea to students, we suggest beginning with the graph
and the table for the rule of earning one dollar for every kilometer walked ($
= 1 x km) and having students see that in each of these representations, the
dollar amount goes up by one for each kilometer walked. To show this on
the graph, the teacher may draw a staircase-like path from point to point
that goes over one and then up one (see Figure 8-2c). In the table, a third
column may be created to show the constant up-by difference between
successive y-values, as also illustrated in Figure 8-2c. We then suggest draw-
ing students’ attention to the facts that this up-by amount corresponds to the
mathematical concept of slope and that slope is a relative measure of a
function’s steepness. That is, the greater the up-by amount, the steeper is the
function. From this point on, y = x (y = 1 • x with a slope of 1) may be
employed as a landmark function for students to use in qualitative reason-
ing, by comparison, about the slopes (and later the y-intercepts) of other
functions. Conceptual landmarks are crucial tools to support learners in making
sense of, catching, and correcting their own and others’ errors.

After having created tables and graphs for the one dollar per kilometer
context, we challenge students such as Katya to provide sponsorship rules
(or functions) having slopes that are steeper and less steep than y = x. To
facilitate the comparison of graphs of functions with different slopes, we
encourage students to plot functions on the same set of axes. Before each
rule is graphed, we ask the students to predict the steepness of the line
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relative to y = x. We also have them invent other rules and make tables and
graphs for those rules. These explorations in multiple contexts and repre-
sentations develop students’ deeper understanding of slope. After all, the
essence of understanding is being able to apply a concept flexibly in differ-
ent contexts and with different representations. After having worked with
functions having varying degrees of steepness, we ask the students to sum-
marize their findings about slope and to explain that steeper lines are the
result of functions having bigger up-by amounts.

In our instruction, we do not provide students at the outset with an
algorithm for finding the slope of a function. However, we do suggest that
students be asked for their ideas about how the steepness, or slope, of a
function can be quantified—that is, represented as a number—and how
they can obtain that number from any of the representations of a function
they have seen. This is illustrated by the following teacher–student exchange
from a ninth-grade class:

Teacher This line [pointing to a graph of y = x] has a
certain steepness to it. . . . If you had to give a
number to this steepness, what would you
give it? Look at these numbers (pointing to the
corresponding table of values).

Aaron One.

Teacher Why one?

Aaron ‘Cause they all go up by one.

Introducing and working with functions having negative slopes is also
important to show that the way the students have been constructing slope as
the up-by amount is applicable to all straight-line functions, whether they
increase or decrease. We generally introduce negative values along the y-
axis by asking students to think about how the negative values along the y-
axis can be used. One situation we employ is from the perspective of the
donor or sponsor, who loses money as the participant walks. In our experi-
ence, students generally recognize that these lines have a down-by amount
when a fixed amount of money is given away for each kilometer walked.

Summary of Principle #1 in the Context of Learning Slope. We have
used a lesson on slope to illustrate how students’ initial knowledge of a
topic can be used for building formal or conventional mathematical knowl-
edge and notation structures. In this case, we draw on three sorts of prior
knowledge. First, students’ prior knowledge of familiar situations such as
earning money in a walkathon can be used to elicit and extend the students’
informal, intuitive ideas about a difficult topic such as slope. Second, stu-
dents’ prior knowledge of natural language, such as “up-by,” can be used to
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build a sound foundation of understanding for explaining and working with
more formal concepts and procedures, such as finding slope from a graph.
Third, prior knowledge with respect to initial numeric and spatial under-
standings can be integrated through instruction to help students construct a
conceptual understanding of slope within a broader framework for under-
standing functions in general.

Example Lesson 2: Learning y-Intercept

This example lesson focuses on learning and teaching y-intercept. It
illustrates the effect of theory-based instructional design in connecting stu-
dents’ factual/procedural and conceptual knowledge (principle 2).

A commonly taught procedure for finding the y-intercept of a function is
to substitute x = 0 into the function’s equation, with the result being the y-
intercept. Instead of starting by formally introducing this method, this lesson
begins by having students explore situations in which a nonzero starting
amount is used. This approach appears to do a better job of helping students
learn the formal procedure in the context of a robust conceptual under-
standing.

The Lesson. The lesson on y-intercept follows that on slope in the overall
curricular sequence. Two class periods of about 90 minutes are suggested
for working with y-intercept. We introduce the y-intercept by suggesting the
idea of a starting bonus or an initial amount of money that may be contrib-
uted before the walkathon even begins. Students have termed this starting
amount the “starter offer” or “starter upper.” These phrases have repeatedly
been shown to be simple for students to understand first in the walkathon
context and then in more abstract situations.

We again begin this lesson with a sponsorship arrangement of earning
one dollar for every kilometer walked. We then have students graph this
function, construct a table of values, and write a symbolic representation
for the function. We then tell students they will be given a five-dollar starter
offer just for participating in the walkathon. That is, before they have walked
at all, they will already have earned five dollars. In addition to this starting
bonus, they will still be earning one dollar for every kilometer walked.
Students are then asked to construct a table for this function and to calcu-
late how much money they will have earned at zero kilometers, one kilo-
meter, two kilometers, and so on. After the table has been constructed,
students are asked to graph the function and to make an equation for it.
Having students verbally describe the relationship between the kilometers
and dollars helps them formulate an equation. For example, a student might
say, “I think it would be five plus the kilometers equals money.” That de-
scription could then be translated into the situation-specific symbolic ex-
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pression 5 + km = $, and that expression, in turn, formalized into the gen-
eral expression, y = x + 5.

As the lesson proceeds, we suggest other rules whereby students earn
one dollar per kilometer but have different starter offer amounts, such as
two dollars, ten dollars, and three and a half dollars. We ask the students first
to predict where on a graph each new function will be relative to the first
example given (y = x + 5) and then to construct tables, graphs, and equa-
tions for each new function. Students are asked to describe any patterns or
salient characteristics they see in this group of functions. What we want
students to see, both literally and figuratively, is that all of the functions are
parallel, with a slope of 1, but their starting point on the graph changes in
accordance with the starting bonus offered. Furthermore, the distance be-
tween points on any two graphs is equal to the difference in starting bo-
nuses. For example, the functions 5 + km = $ and 10 + km = $ are five units
apart at every point along the line of each function. Likewise, in examining
the tables for each of the functions, we want students to see that all of the
functions go up by one (accounting for the parallel lines), but the first value
in the dollar column of each of the tables is equal to the starting bonus. We
then connect the “starting points” of the graphs and tables with the structure
of the equations to show that the starting bonus is indeed added to each x-
value.

Emphasizing that the only effect of changing the starter offer is a vertical
shift in a function is crucial because a number of researchers have found that
students regularly confuse the values for slope and y-intercept in equations.
That is, in an equation such as y = 2x + 7, many students are unsure of which
“number” is the y-intercept and which is the slope. Initially, students of all
ages and grades in our program often predict that changing the starter offer
will also change the steepness (slope) of a function. However, working
through many examples for which the amount earned per kilometer (the
slope) is held constant will help students see, in context, that changing the
starting bonus does not affect the amount being earned per kilometer, which
is how the steepness or slope of the function is determined. Ultimately, by
establishing the meaning of y-intercept in the context of the walkathon and
by applying that meaning to the different representations of a function, the
confusion of slope and y-intercept is significantly minimized for students.

Negative y-intercepts are introduced using the idea of debt. In this case,
students have to pay off a starter offer amount. For example, a student in
one of our studies suggested that if she owed ten dollars on her credit card
and paid off one dollar every time she walked a kilometer, she would have
to start at minus ten dollars. Then after one kilometer, she would pay off one
dollar and still be nine dollars in debt, then eight, then seven, etc. Students
can construct tables, graphs, and equations for such situations that they
invent and perhaps share with a partner or the class. The writing of the
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equations for these functions may take different forms at first. Many students
choose to adhere to the notion that the starter offer is “added” in the equa-
tion. Thus an equation for a function such as that described above would
look like $ = 1 • km + –10. While students are consolidating the concept of
y-intercept and distinguishing it from slope, we recommend that they be
allowed to write equations in this way. An alternative, more conventional
format may be suggested by repeating the function and writing it in conven-
tional notation alongside the student-constructed expression. Again, we stress
the importance of students’ developing a conceptual framework for these
difficult concepts, which can be formalized over time once the ideas are
firmly in place.

Following is a short classroom exchange between a teacher and a stu-
dent. The context of earning five dollars per day for a paper route had
already been developed by the teacher for an earlier teaching example. The
teacher continued with this context in introducing linear functions with nega-
tive y-intercepts and positive slopes.

Teacher We owe 90 dollars, so think of it as a negative
amount we have and over time we’re coming
up toward zero. We’re coming toward breaking
even; towards no longer being in debt. So
every day that goes 5 dollars toward zero
[referring to and constructing both a graph and
a table]. So up by 5, up by 5, up by 5, and so
on. What are these differences [referring to the
y values in the table]?

Justin Positive 5.

Teacher Ya, we’re going up by 5 so as we go across 1
we go up by 5.

In the lessons on nonlinear functions, the starter offer idea is also ap-
plied. Generally, students quickly see that including the starter offer in a
curved-line function has the same effect as it does on straight-line functions.
That is, the steepness of the line (or curve) is not altered by changing the
starter offer, only the place at which the function meets the vertical axis in a
graph. The result is that each point on the curve is shifted up (or down) by
the starter offer amount.

A suggested follow-up activity that addresses both slope and y-inter-
cept is to have students, either individually or in pairs, invent two functions
that will allow them to earn exactly $153 upon completing a ten-kilometer
walkathon. Both strategies must produce straight lines. We ask students to
construct tables, graphs, and equations to show their work, and also ask
them to identify the slope and y-intercept of each function. Individuals or

Copyright © National Academy of Sciences. All rights reserved.

How Students Learn: Mathematics in the Classroom
http://www.nap.edu/catalog/11101.html

http://www.nap.edu/catalog/11101.html


384 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

pairs of students then show their functions to the whole group. Samples of
student work are shown in Box 8-4. We also challenge students to work
“backwards,” that is, to find what the starter offer would have to be if
the slope were 10, or what the slope would have to be if the starter offer
were 20.

Summary of Principle #2 in the Context of Learning y-Intercept. We
have used a lesson on y-intercept to illustrate how students connect their
factual/procedural and conceptual knowledge within the instructional bridging
context of a walkathon. The walkathon context is intended to help students
relate their new and existing knowledge within an organized conceptual
framework in ways that facilitate efficient retrieval of that knowledge. The
idea of a “starter offer” gives students a reasonably familiar situation that
provides a context for learning y-intercept—ordinarily a relatively abstract
and difficult mathematical topic that is often confused with slope in stu-
dents’ understanding of linear function. In our approach, students still learn
the notations, symbols, words, and methods necessary for identifying the y-
intercept of a function (linear or nonlinear). However, they acquire that
knowledge in context and initially without algorithms, and with a depth of
understanding and attribution of meaning that minimize the procedural and
conceptual difficulties many students experience with the topic.

Example Lesson 3: Operating on y = x2

After the first four lessons, which take place in the classroom, students
move to a computer environment where they work with spreadsheet tech-
nology to consolidate and apply the concepts introduced in the classroom
instruction and to extend their understandings to new situations. The par-
ticular lesson we use for illustrating principle 3, developing metacognitive
skills, is the fourth in the series of computer activities.

The Lesson. Pairs of students use prepared spreadsheet files to work with a
computer screen such as that seen in Figure 8-3. Students are asked to
change specific parameters in the function y = ax2 + b to move the graph
through preplotted colored points. The file is designed so the students can
change the value of just the exponent, the coefficient of x2, the y-intercept,
or any combination of these. With each change, the graph and table of
values change instantly and automatically to reflect the numeric (tabular)
and graphic (spatial) implications of that change. For example, students are
asked to describe and record what happens to the graph and the “Y” column
of the table of values when the exponent in y = x2 is changed to 3, to 4, and
then more generally to any number greater than 2. Students are then asked
to describe and record what happens to the curve when x2 is multiplied by
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BOX 8-4 Two Different Student Solutions to an Open-Ended Problem

a value larger than 1, smaller than 1 but greater than 0, and less than 0. They
are then asked to compare the tables and graphs for y = x2, y = 2 * x2, y = 3
* x2, y = 4 * x2, etc. and to describe in words what patterns they find. Finally,
students are asked to compare the table of values for y = 2 * x2 and y = -2 *
x2 and describe what they notice.
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FIGURE 8-3 Sample computer screen. In this configuration, students can change the value of
a, n, or b to effect immediate and automatic changes in the graph and the table. For example,
if students change the value of b, just the y-intercept of the curve will change. If students change
a or n to a positive value other than 1, the degree of steepness of the curve will change. If
students change the value of a to a negative value, the curve will come down. All graphic
patterns will be reflected in the table of values.

Students must employ effective metacognitive strategies to negotiate and
complete these computer activities. Opportunities for exploring, persever-
ing, and knowing when and how to obtain help are abundant. Metacognitive
activity is illustrated in the following situation, which has occurred among
students from middle school through high school who have worked through
these activities.

When students are asked to change the parameters of y = x2 to make it
curve down and go through a colored point that is in the lower right quad-
rant, their first intuition is often to make the exponent rather than the coef-
ficient negative. When they make that change, they are surprised to find that
the graph changes shape entirely and that a negative exponent will not
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satisfy their needs. By trying a number of other possible alterations (perse-
vering), some students discover that they need to change the coefficient of
x2 rather than the exponent to a negative number to make the function curve
down. It is then a matter of further exploration and discovery to find the
correct value that will make the graph pass through the point in question.
Some students, however, require support to discover this solution. Some try
to subtract a value from x2 but are then reminded by the result they see on
the computer screen that subtracting an amount from x2 causes a downward
vertical shift of the graph. Drawing students’ attention to earlier exercises in
which they multiplied the x in y = x by a negative number to make the
numeric pattern and the graph go down encourages them to apply that
same notion to y = x2. To follow up, we suggest emphasizing for students
the numeric pattern in the tables of values for decreasing curves to show
how the number pattern decreases with a negative coefficient but not with a
negative exponent.

Following is a typical exchange between the circulating teacher and a
pair of students struggling with flipping the function y = x2 (i.e., reflecting it
in the x-axis). This exchange illustrates the use of metacognitive prompting
to help students supervise their own learning by suggesting the coordina-
tion of conclusions drawn from one representation (e.g., slope in linear
functions) with those drawn from another (e.g., slope in power functions).

Teacher How did you make a straight line come down
or change direction?

John We used minus.

Teacher How did you use “minus”?

Pete Oh yeah, we times it by minus something.

Teacher So . . . how about here [pointing at the x2]?

John We could times it by minus 2 [typing in x2 • -2].
There! It worked.

Without metacognitive awareness and skills, students are at risk of miss-
ing important inconsistencies in their work and will not be in a position to
self-correct or to move on to more advanced problem solving. The example
shown earlier in Figure 8-1a involves a student not reflecting on the incon-
sistency between a negative slope in his equation and a positive slope in his
graph. Another sort of difficulty may arise when students attempt to apply
“rules” or algorithms they have been taught for simplifying a solution to a
situation that in fact does not warrant such simplification or efficiency.

For example, many high school mathematics students are taught that
“you only really need two points to graph a straight line” or “if you know
it’s a straight line, you only need two points.” The key phrase here is “if you
know it’s a straight line.” In our research, we have found students applying

Copyright © National Academy of Sciences. All rights reserved.

How Students Learn: Mathematics in the Classroom
http://www.nap.edu/catalog/11101.html

http://www.nap.edu/catalog/11101.html


388 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

FIGURE 8-4

that two-point rule for graphing straight lines to the graphing of curved-line
functions. In the example shown in Figure 8-4, an eleventh-grade advanced
mathematics student who had been learning functions primarily from a
textbook unit decided to calculate and plot only two points of the function
y = x2 +1 and then to join them incorrectly with a straight line. This student
had just finished a unit that included transformations of quadratic functions
and thus presumably knew that y = x2 makes a parabola rather than a
straight line. What this student did not know to perform, or at least exer-
cise, was a metacognitive analysis of the problem that would have ruled out
the application of the two-points rule for graphing this particular function.

Summary of Principle #3 in the Context of Operating on y = x2. The
general metacognitive opportunities for the computer activities in our cur-
riculum are extensive. Students must develop and engage their skills involv-
ing prediction, error detection, and correction, as well as strategies for scien-
tific inquiry such as hypothesis generating and testing. For instance, because
there are innumerable combinations of y-intercept, coefficient, and expo-
nent that will move y = x2 through each of the colored points, students must
recognize and acknowledge alternative solution paths. Some students may
fixate on the steepness of the curve and get as close to the colored points as
possible by adjusting just the steepness of the curve (by changing either the
exponent or the coefficient of x2) and then changing the y-intercept. Others
may begin by selecting a manageable y-intercept and then adjust the steep-
ness of the curve by changing the exponent or the coefficient. Others may
use both strategies equally. Furthermore, students must constantly be pre-
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dicting the shapes and behaviors of the functions with which they are work-
ing and adjusting and readjusting their expectations with respect to the math-
ematical properties and characteristics of linear and nonlinear functions.

SUMMARY
Sometimes mathematics instruction can lead to what we refer to as “un-

grounded competence.” A student with ungrounded competence will dis-
play elements of sophisticated procedural or quantitative skills in some con-
texts, but in other contexts will make errors indicating a lack of conceptual
or qualitative understanding underpinning these skills. The student solution
shown earlier in Figure 8-1a illustrates such ungrounded competence. On
the one hand, the student displays elements of sophisticated skills, including
the slope formula and negative and fractional coefficients. On the other
hand, the student displays a lack of coordinated conceptual understanding
of linear functions and how they appear in graphical, tabular, and symbolic
representations. In particular, he does not appear to be able to extract quali-
tative features such as linearity and the sign of the slope and to check that all
three representations share these qualitative features.

The curricular approach described in this chapter is based on cognitive
principles and a detailed developmental model of student learning. It was
designed to produce grounded competence whereby students can reason
with and about multiple representations of mathematical functions flexibly
and fluently. Experimental studies have shown that this curriculum is effec-
tive in improving student learning beyond that achieved by the same teach-
ers using a more traditional curriculum. We hope that teachers will find the
principles, developmental model, and instructional examples provided here
useful in guiding their curriculum and teaching choices.

We have presented three example lessons that were designed within
one possible unifying context. Other lessons and contexts are possible and
desirable, but these three examples illustrate some key points. For instance,
students may learn more effectively when given a gradual introduction to
ideas. Our curriculum employs three strategies for creating such a gradual
introduction to ideas:

• Starting with a familiar context: Contexts that are familiar to students,
such as the walkathon, allow them to draw on prior knowledge to think
through a mathematical process or idea using a concrete example.

• Starting with simple content: To get at the essence of the idea while
avoiding other, distracting difficulties, our curriculum starts with mathemati-
cal content that is as simple as possible—the function “you get one dollar for
every kilometer you walk” (y = x).
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• Focusing on having students express concepts in their own language
before learning and using conventional terminology: To the extent that a
curriculum initially illustrates an idea in an unfamiliar context or with more-
complex content, students may be less likely to be able to construct or
invent their own language for the idea. Students may better understand and
explain new ideas when they progress from thinking about those ideas us-
ing their own invented or natural language to thinking about them using
formal conventional terms.

A risk of simplicity and familiarity is that students may not acquire the
full generality of relevant ideas and concepts. Our curriculum helps students
acquire correct generalizations by constructing multiple representations for
the same idea for the same problem at the same time. Students make com-
parisons and contrasts across representations. For example, they may com-
pare the functions y = .5x, y = 2x, and y = 10x in different representations
and consider how the change in slope looks in the graph and how the table
and symbolic formula change from function to function. We also emphasize
the use of multiple representations because it facilitates the necessary bridg-
ing between the spatial and numerical aspects of functions. Each representa-
tion has both spatial and numerical components, and students need experi-
ence with identifying and constructing how they are linked.

As illustrated earlier in Figure 8-1a, a curriculum that does not take this
multiple-representation approach can lead students to acquire shallow ideas
about functions, slope, and linearity. The student whose response is shown
in that figure had a superficial understanding of how tables and graphs are
linked: he could read off points from the graph, but he lacked a deep under-
standing of the relationship between tables and graphs and the underlying
idea of linearity. He did not see or “encode” the fact that because the graph
is linear, equal changes in x must yield equal changes in y, and the values in
the table must represent this critical characteristic of linearity.

The curriculum presented in this chapter attempts to focus limited in-
structional time on core conceptual understanding by using multiple repre-
sentations and generalizing from variations on just a few familiar contexts.
The goal is to develop robust, generalizable knowledge, and there may be
multiple pathways to this end. Because instructional time is limited, we de-
cided to experiment with a primary emphasis on a single simple, real-world
context for introducing function concepts instead of using multiple contexts
or a single complex context. This is not to say that students would not
benefit from a greater variety of contexts and some experience with rich,
complex, real-world contexts. Other contexts that are relevant to students’
current real-world experience could help them build further on prior knowl-
edge. Moreover, contexts that are relevant to students’ future real-world
experiences, such as fixed and variable costs of production, could help them
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in their later work life. Since our lessons can be accomplished in anywhere
from 3 to 6 weeks (650 minutes), there is sufficient time for other activities to
supplement and extend students’ experience.

In addition to providing a gradual introduction to complex ideas, a
key point illustrated by our lessons is that curriculum should be mathemati-
cally sound and targeted toward high standards. Although the lessons de-
scribed here start gradually, they quickly progress to the point at which
students work with and learn about sophisticated mathematical functions at
or beyond what is typical for their grade level. For instance, students progress
from functions such as y = x to y = 10 – .4x in their study of linear functions
across lessons 1 to 3, and from y = x2 to y = (x – 2)2 + 4 in their study of
nonlinear functions across lessons 4 to 8.

We do not mean to suggest that this is the only curriculum that promotes
a deep conceptual understanding of functions or that illustrates the prin-
ciples of How People Learn. Indeed, it has important similarities, as well as
differences, with other successful innovations in algebra instruction, such as
the Jasper Woodbury series and Cognitive Tutor Algebra (previously called
PUMP), both described in How People Learn. All of these programs build on
students’ prior knowledge by using problem situations and making connec-
tions among multiple representations of function. However, whereas the
Jasper Woodbury series emphasizes rich, complex, real-world contexts, the
approach described in this chapter keeps the context simple to help students
perceive and understand the richness and complexity of the underlying math-
ematical functions. And whereas Cognitive Tutor Algebra uses a wide variety
of real-world contexts and provides intelligent computer tutor support, the
approach described here uses spreadsheet technology and focuses on a
single context within which a wide variety of content is illustrated.

All of these curricula, however, stand in contrast to more traditional
textbook-based curricula, which have focused on developing the numeric/
symbolic and spatial aspects of functions in isolation and without particular
attention to the out-of-school knowledge that students bring to the class-
room. Furthermore, these traditional approaches do not endeavor to con-
nect the two sorts of understandings, which we have tried to show is an
essential part of building a conceptual framework that underpins students’
learning of functions and ultimately their learning in related areas.
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NOTES
1. The study of functions, as we define it here, overlaps substantially with the

topic of “algebra” traditionally taught in the United States in ninth grade, though
national and many state standards now recommend that aspects of algebra be
addressed in earlier grades (as is done in most other countries). Although
functions are a critical piece of algebra, other aspects of algebra, such as equa-
tion solving, are not addressed in this chapter.

2. Thomas, 1972, p. 17.
3. Goldenberg, 1995; Leinhardt et al., 1990; Romberg et al., 1993.
4. Nathan and Koedinger, 2000.
5. Koedinger and Nathan, 2004.
6. Koedinger and Nathan, 2004.
7. Koedinger et al., 1997.
8. Kalchman, 2001.
9. Schoenfeld et al., 1993.

10. Schoenfeld et al., 1987.
11. Schoenfeld et al., 1998, p. 81.
12. Chi et al., 1981.
13. Chi et al., 1981; Schoenfeld et al., 1993.
14. Kalchman, 2001.
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