LOGISTICS

Webpage: www.math.uic.edu/jbaldwin email: jbaldwin@uic.edu
office hours: By appointment:
name cards

Feb 2: Overview

1. graphing distance versus time
2. absolute value
3. Homework from an Advanced Standpoint
(a) Rethinking rules
(b) Formulas, Equations and functions
4. Cartoon and KK reading
5. Matters arising
6. Systems of Inequalities involving absolute value

1 Functions

Concept before Name

George goes for a walk in the park. The y-coordinate denote the distance along the path from his starting place that he has reached at time t.

Tell a story to explain this graph (on handout).
Is this the graph of a function. If so, what is the rule?
Piece-wise definable functions

Ahren's Axiom

Introduce the concept and help students understand it before giving a name.

Distance

Now consider the first two problems on the worksheet about trips to Urbana.

Absolute Value

The distance between two real numbers x and y is called the absolute value of $x-y$ and written:

$$
|x-y|
$$

CME -202 Do problems on 202/203

Theorem 3.1

Theorem 1. The absolute value of a number x is its distance from 0 on the number line.

Absolute value again

$$
x= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Absolute value in equations and inequalities

What are the points whose distance from 3 is 5 . (CME 204)
Graph on the number line the set of points whose distance from 3 is at most 5.

Solve the following inequality and graph the solution set on the number line.

$$
|2 x-5|<10
$$

Hard Problem

Solve the following inequality and graph the solution set on the number line. Do both intuitively, formally and with graphing calculator.

$$
|.5 x+3.5|<4
$$

Systems of Inequalities

Carefully sketch on the graph below the solution region to the following system of inequalities. Label each of the straight lines on your graph.

$$
\begin{array}{ccc}
2 x-3 y & < & 3 \\
y & < & |2 x-5| \\
y & < & 5
\end{array}
$$

Hint: Graph, then solve exactly to find the points of intersection that you actually need.

2 Homework from an advanced standpoint

RULES

Think about the question:
What is a rule?
as we look at the homework problems.

Handout

hw 1a, 4 exact; in-out vrs out-in
$2 \mathrm{a}, 2^{x}-12 \mathrm{~b}$, other rules
3 geometric and algebraic solutions: at least three approaches

CME

411-5, 422-2, 422-3;

RULES

What is a rule?
When are two rules different?
When are two rules really different?

Special functions

Consider the CME 422: 2 and 3
$y=3$ or $f(x)=3$ is a constant function.
$y=x$ or $f(x)=x$ is the identity function.

My Definition

A function consists of a domain and a rule.
The rule assigns exactly one output to each member of the domain.

Formulas vrs equations

What's the difference?

$$
\begin{gathered}
3 x+2=7 x+5 \\
A=\pi r^{2}
\end{gathered}
$$

The second abbreviates

$$
A(r)=\pi r^{2}
$$

Matters Arising

Any other questions?

Systems of Inequalities

Carefully sketch on the graph below the solution region to the following system of inequalities. Label each of the straight lines on your graph.

$$
\begin{array}{ccc}
2 x-3 y & < & 3 \\
y & < & |2 x-5| \\
y & < & 5
\end{array}
$$

Hint: Graph, then solve exactly to find the points of intersection that you actually need.

