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Preliminary Version
This is an account of Keisler’s work showing that if a sentence φ of Lω1,ω

that has few models in ℵ1 each model of φ realizes only countably many types
over the emptyset. The proof has two main components. One rephrases the
existence of an end extension of a model A that omits a type p as a sentence
(in an expanded vocabulary and logic) that is true in A. The other applies the
rephrasing. We will state the rephrasing, make the applications of it, and then
prove the rephrasing holds. The last of these comprises Theorem 13 (p. 55), 28
(p. 111) and 42 (p. 163) of [?]. The first is the rest of chapters 30 and 31 of
that book.

Definition 0.1 A fragment ∆ of Lω1,ω is a subset of Lω1,ω closed under subfor-
mula, substitutions of terms, finitary logical operations and such that: whenever
Θ ⊂ ∆ is countable and φ,

∨
Θ ∈ ∆ then

∨
{∃xθ : θ ∈ Θ},

∨
{φ ∧ θ : θ ∈ Θ},

and
∨

({φ} ∪Θ) are all in ∆. Further, when dealing with theories with linearly
ordered models, we require that if φ,

∨
Θ ∈ ∆ then

∨
({for arb large x)θ : θ ∈ Θ}

Notation 0.2 LA is a countable fragment of Lω1,ω. All models will be equipped
with a linear ordering <. LA(A) is the language obtained by adding names for
the elements of A. (B,<) is an LA end extension of (A,<) if it is an LA
elementary extension and (A,<) is an initial segment of (B,<). A′ denotes
(A,<, a)a∈A.

Keisler wants to apply these results to models of set theory and uses a
transitive, irreflexive relation rather than requiring a linear order. The added
generality is easy to obtain but makes it a bit harder to state results so we
ignore it.

Basic idea. M omits p(x) iff M |= (∀x)
∨

σ∈p ¬σ(x). Our types are over the
empty set and in a fixed fragment LA unless said otherwise.

In the Section 1 we describe the main technical result and give some imme-
diate consequences.
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1 Key tool and immediate consequences

Throughout this section we assume that there is a symbol < in the vocabulary
and that the theory T makes < a linear order. Note that in any linearly ordered
structure we have the quantifier ‘(for arbitrarily large u)χ(u)’: (∀x)(∃u)u >
x ∧ χ(u).

The next theorem is the key tool for the main results.

Theorem 1.1 Fix a countable fragment LA of Lω1,ω, a theory T in LA such
that < is a linear order of each model of T . For each p(x) an LA-type (possibly
incomplete) over the empty set, there is a sentence θp ∈ Θ in Lω1,ω satisfying
the following conditions.

1. If p is omitted in an uncountable model (B,<) of T then for any countable
(A,<) such that (B,<) is an end LA-elementary extension of (A,<),
(A,<) |= θp.

2. θp satisfies:

(a) If B |= θp then B omits p.

(b) θp is preserved under unions of chains of LA-elementary extensions;

(c) for any family X of LA-types 〈pm : m < ω〉 over ∅ and any count-
able A, if A |= θpm

for each M then A has a proper LA-elementary
extension that satisfies each θpm

.

3. Let X be a collection of complete LA′(τ ′)-types (for some A′ ⊆ A and
τ ′ ⊆ τ) over the empty set that are realized in every uncountable model of
T . Then, X is countable.

We defer the proof and make several observations.

Corollary 1.2 Let (A,<) be countable and suppose for each m < ω A |= θpm .
Then there is an uncountable end extension B of A omitting all the pm.

Proof. By condition Theorem 1.1 2c) there is a proper elementary end
extension of A1 of A satisfying all the θpm . Iterate this construction through
ω1 using Theorem 1.1 2b) at limit stages. By Theorem 1.1 2a) the limit model
omits all the pm. 21.2

The following example (Marker correcting an example of Baldwin) shows
the significance of end extension in the statement above.

Remark 1.3 Our fragment is first order logic. In our base model M we have
points of two colors–say red and blue and the red points and blue points each
form a copy of (Z, s). Let p be the type which says there are no new red points
and q the type which says no new blue points. Of course it is true that M
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has elementary extensions of cardinality ℵ1 omitting p and extensions of size ℵ1

omitting q but none omitting both.
But–this observation does not take into account the end extension. We also

have some linear order > of A. One of the following holds: a) there exists x all
y > x are the same color b) for all x there are y, z > x of different colors.

if a) holds then only one of p or q can be omitted in an elementary end
extension.

if b) holds then neither p nor q can be omitted in an elementary end exten-
sion.

2 Main Consequences

In this section, we do not assume there is a linear ordering in the language, but
we will add one in order to obtain the situation of the previous section.

Definition 2.1 K is a PCδ class in Lω1,ω if K is the class of reducts to τ(K)
of the class of models of a sentence of Lω1,ω in some expansion τ ′ of τ .

This is the same as what Shelah calls PC(ℵ0,ℵ0) and I call PCΓ(ℵ0,ℵ0).

Theorem 2.2 If a PCδ over Lω1,ω class K has an uncountable model then
for any countable fragment LA, there are only countably many LA-types over ∅
realized in every uncountable member of K.

Proof. Let φ be a τ ′-sentence of Lω1,ω such that K is the class of τ reducts
of models of φ. Let LA(τ ′) be the smallest fragment that contains φ. Let X be
the collection of LA(τ)-types over ∅ realized in every uncountable model of φ.

Take an uncountable model of φ and well-order it in order type ω1 to get
(B,<). Let T ′ be the LA(τ ′)-theory of (B,<). We can construct (A,<) such
that (B,<) is an uncountable LA-end extension of (A,<). If p is realized in
every uncountable model in K then p is realized in every uncountable model of
T ′. So applying Theorem 1.1.3 to T ′ and X we have the result. 22.2

Theorem 2.3 If a PCδ over Lω1,ω class K has an uncountable model but less
than 2ω1 models of power ℵ1 then for any countable fragment LA, then every
member of K realizes only countably many LA-types over ∅.

Proof. Let T ′ = {φ} be a τ ′-sentence of Lω1,ω such that K is the class of τ
reducts of models of φ. Let LA(τ ′) be the smallest fragment that contains φ.

If the conclusion fails for some natural number p there are uncountably
many LA − p-types over the empty set realized in some model B ∈ K; wolog
|B| = ℵ1. First note that we can expand the language with a unary predicate
and functions so that there is a set U of p-tuples that realize distinct p-types and
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U has the same cardinality as the universe. This can be expressed by a sentence
of Lω1,ω, so we have a PCδ over Lω1,ω-class K ′′ such that every uncountable
model realizes uncountably many types. We will show K ′′ has 2ℵ1 models of
cardinality ℵ1. Indeed they are pairwise not mutually embeddible.

Suppose that K ′′ is axiomatized in the fragment LA′′ and let B′′ be an
uncountable model. Now fix A′′ = A∅ as a countable submodel so that B′′ is
an LA′′ -end extension of A′′ and p∅ as any LA-p-type over ∅ realized in A′′. We
construct a family of countable τ ′′-models As for s ∈ 2<ω1 and LA-types ps over
the empty set to satisfy the following conditions:

1. if s < t then At is an LA′′ -end extension of As;

2. if s ≤ t then At realizes ps;

3. if s < t and ŝ i 6≤ t (for i ∈ {0, 1}) then At |= θp
ŝ i

and so omits p
ŝ i

.

Then if σ ∈ 2ω1 and s ∈ 2<ω1 , Mσ =
⋃

s⊂σ Ms realizes ps iff s < σ. This
clearly suffices as σ 6= τ ∈ 2ω1 implies Mσ cannot be embedded in Mτ .

Now for the construction. For the limit stage we need to know that if we
have an increasing chain Mi such that for i0 < j < α, Mj |= θpi0

then so does
Mα. This is immediate from Theorem 1.1.2b.

Now for the successor stage. We have an As satisfying the conditions. That
is, As realizes pt if t ≤ s and As |= θp

t̂ i

if t < s and t̂ i 6≤ s. Let K3 be the
class of all τ -reducts of LA′′ -end extensions of As that omit p

t̂ i
if t < s and

t̂ i 6≤ s. Corollary 1.2 gives us an uncountable LA′′ -end extension Bs of As in
K3. By Theorem 2.2 only countably many LA types over ∅ are realized in all
models in K ′′′. So we can choose p

ŝ 0
that is realized in Bs but omitted in

some uncountable model LA′′ -end extension of As, B1 ∈ K3. Choose A
ŝ 0

as a
countable LA′′ -end extension of As that realizes p

ŝ 0
and with

As ≺A′′ A
ŝ 0

≺A′′ Bs.

By Theorem 1.1.1, A
ŝ 0

|= θpt for t < s and t̂ i 6≤ s.
To choose p

ŝ 1
and A

ŝ 1
, we now apply Theorem 2.2 to K4 obtained by

requiring in addition to K3 that p
ŝ 0

is omitted. We know B1 is one LA′′ -end
extension of As that is in K4. Since B1 realizes ℵ1-types there must be a type
p

ŝ 1
realized in B1 and omitted in some uncountable LA′′ -end extension of A

ŝ 0
;

thus A
ŝ 0

|= θp
ŝ 1

. Let A
ŝ 1

be a countable LA′′ -end extension of As with B1

an LA′′ -end extension of A
ŝ 1

so that A
ŝ 1

realizes p
ŝ 1

; by Theorem 1.1.1 A
ŝ 1

satisfies condition 3). This completes the construction.
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3 The Omitting Types and End Extension The-
orems

Theorem 3.1 (Omitting types theorem) Let LA be a countable fragment
of Lω1,ω and T a set of LA-sentences. Further, for each m, let pm be a set of
LA-formulas φ(x1, . . . xkm). Suppose

1. T has a model

2. and for each m < ω and any φ(x1, . . . xkn
) ∈ LA, if T ∪ (∃x)φ(x) has a

model then so does T ∪ (∃x)(φ(x) ∧ ¬σm) for some σm ∈ pm.

Then there is a model of T omitting all the pm.

Proof sketch: Add a new set of constants C and obtain MA by including
any substitution of a finite sequence c for a finite sequence of variables x in an
LA-formula.

Let S be the set of sets s of the form:

s = s0 ∪ T ∪ {
∨

σ∈pm

¬σ(c) : c ∈ C,m < ω}

where s0 is a finite set of MA-sentences such that T ∪ s0 has a model and only
finitely many of the new constants occur in s0. We claim S is a consistency
property.

The crux is C4 in Marker’s compilation:
Let X be a countable set of LA formulas.

∨
X ∈ s ∈ S implies for some

φ ∈ X, s ∪ {φ} ∈ S.
So consider a specific s of the form:

∨
X ∈ s ∈ S.

If
∨
X ∈ s0∪T , this is immediate by the definition of truth of a disjunction.

So, suppose for some c,
∨
X =

∨
{¬σ(c) : σ ∈ pm} for some m. Let d be

the new constants which occur in s0 but not in c – we write s0 = s0(c,d). Since
s ∈ S.

T ∪ {(∃x)(∃y)
∧
s0(x,y)}

has a model. By hypothesis 2) for some σ ∈ pm,

T ∪ {(∃x)(∃y)
∧
s0(x,y) ∧ ¬σ(x)} (1)

has a model. So
s ∪ {¬σ(c)} ∈ S

because ¬σ(c) ∈ X and T ∪ s0 ∪ {¬σ(c)} has a model. By Marker’s Exercise
3.7, the set of formulas 1 has a model with all its elements named by members
of C. This completes the proof. 23.1
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Definition 3.2 Let (A,< . . .) be a countable linearly ordered structure and LA
be a countable fragment of Lω1,ω. (A,< . . .) is LA-extendible if

1. < has no last element;

2. (exists arbitrarily large x)
∨

n φn →
∨

n (exists arbitrarily large x) φn;

3. (exists arbitrarily large x) (∃y)φ(x, y) → (∃y) (exists arbitrarily large x)
φ(x, y)∨ (exists arbitrarily large y)(∃x)φ(x, y) ;

where
∨

n φn and (∃y)φ are in LA.

Note that there is an LA-sentence over the empty set, θext, such that for any
countable (B,<), B |= θext if and only if B is extendible.

Exercise 3.3 Verify that the conditions for extendibility are true in a model of
power ω1 that is ordered by ω1.

We quote the next result in the proof of Theorem 1.1.

Theorem 3.4 (Theorem 28) Let (A,< . . .) be a countable linearly ordered
structure and LA be a countable fragment of Lω1,ω. The following are equivalent:

1. (A,<) has an LA-end-elementary extension;

2. (A,<) has an LA-end-elementary extension with cardinality ω1;

3. (A,<) is LA-extendible.

Proof. We sketch the easy parts first. Clearly ii) implies i). Assuming i and
iii are equivalent, i) implies ii) by an easy elementary chain argument. I check
the second case of i) implies iii).

Suppose B is an end extension of A and A (a fortiori B) satisfy (exists
arbitrarily large x)

∨
n φn(a, x) with a ∈ A. So for some b ∈ B − A and some

c > b, B |=
∨

n φn)(a, c). But then for some n, B |= φn(a, c). Now B and thus
A satisfies (exists arbitrarily large x) φn(a, x).

Now we prove iii) implies i). Add to τ constant symbols a for each a ∈ A
and a further d to obtain a vocabulary τ ′. We will write A′ for the structure
(A, a)a∈A. Let TA be the collection of all LA(A)-sentences true in A′ along with
sentences θ(d) where θ(x) ∈ LA and

A |= (∃y)(∀x)[x > y → θ(x)].

Let φ be the LA(A) sentence expressing that each type of a new element
that is not above all members of A is omitted. Formally,

φ :=
∧
a∈A

(∀y)
∨
b∈A

(y = b ∨ a < y).
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Thus,

B |= TA ∪ {φ}

implies B is a proper LA-elementary (by TA), end (by φ) extension of A.
We will use the omitting types theorem to show T ∪ {φ} is consistent. We

need to show:

1. TA is consistent

2. If (∃y)ψ(y) ∈ LA(A) is consistent with TA then for each a ∈ A, there is a
b ∈ A such that: (∃y)ψ(y) ∧ (y = b ∨ y > a) is consistent with TA.

If 2) holds, by the omitting types theorem we can omit each type: pa = {y <
a, y 6= b : b < a}.

To prove 1) we add to τ ′ a further countable set C of constants. Let S be
the set of all finite subsets s (with constants c1, . . . cn, d) of LA(ACd)-sentences
such that:

A′ |= (for arb large x)(∃u)
∧
s(u, x).

We now show S is a consistency property; the crucial step verifying C4 is given
by clause 2) in the definition of extendible. Suppose

∨
θ∈X ∈ s ∈ S. Then,

trivially,
A′ |= (for arb large x)(∃u)

∨
θ∈X

(
∧
s ∧ θ))

and so since existential quantification distributes over disjunction,

A′ |= (for arb large x)
∨

θ∈X

(∃u)(
∧
s ∧ θ))

But then by extendibility for some θ ∈ X,

A′ |= (for arb large x)(∃u)(
∧
s ∧ θ)).

So, s ∪ {θ} ∈ S.
Since A has arbitrarily large elements, A′ |= (for arb large x)x = x. Thus

{c = c} ∈ S and S is non-empty.
Now to show T has a model it suffices to show that

S′ = {s ∪ TA : s ∈ S}

is a consistency property. For this, suppose s ∈ S and ψ ∈ TA; we deduce
s ∪ {ψ} ∈ S. Recall from the definition of TA that θ(d) ∈ TA where θ(x) ∈ LA
implies

A |= (∃y)(∀x)[x > y → θ(x)].
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Since A has no last element,

A′ |= (for arb large x)(∃u)(
∧
s).

Together these two statements imply

A′ |= (for arb large x)(ψ(x) ∧ (∃u)(
∧
s))

so s ∪ {ψ} ∈ S. So TA is consistent.
We now prove 2). First we note:
(*) there is a model of TA ∪ {ψ(d)} iff A′ |= (for arb large x)ψ(x).
If A′ |= (for arb large x)ψ(x), then {ψ(d)} ∈ S so TA ∪{ψ(d)} ∈ S′ and has

a model. The converse is just translating formulas.
Now suppose (∃y)ψ(d, y) is consistent with TA and choose a ∈ A. Then

A′ |= (for arb large x)[(∃y)(ψ(x, y) ∧ a < y) ∨ (∃y)(ψ(x, y) ∧ y ≤ a)].

By e) in the definition of extendible, we can distribute (for arb large x).

Case I (for arb large x)(∃y)(ψ(x, y) ∧ a < y). Trivially, for any b ∈ A,
(for arb large x)(∃y)(ψ(x, y)∧(y = b∨a < y)). By (*), (∃y)(ψ(d, y)∧(y =
b ∨ a < y)) is consistent with TA and 2) holds.

Case II (for arb large x)(∃y)(ψ(x, y) ∧ y ≤ a). Clearly
A′ |= ¬(for arb large y)(∃x)(ψ(x, y) ∧ y ≤ a). So by 3) in definition of
extendible

A′ |= (∃y)(for arb large x)(ψ(x, y) ∧ y ≤ a).

In particular, for some b ∈ A, A′ |= (for arb large x)(ψ(x, b). Thus,
(∃y)ψ(d, y) ∧ y = b ∨ a < y) is consistent with TA and again we have
2).

This completes the proof. 23.4

4 Proof of the Key Tool

In this section we complete the proof of Theorem 1.1. We must first define the
sentence θp. Let Γ be the set of all pairs 〈γ, S〉 where γ is a formula in LA with
all free variables displayed as γ(x,u,y) and S = (Su) is a finite sequence of
(∃ui) and ‘for arbitrarily large uj ’. We fix the length of the x-sequence but u
and y can have any finite length).

Now for any type p in the variables x, let θp be the conjunction of the
extendability sentence θext and the Lω1,ω(∅)-sentence:
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∧
〈γ,S〉∈Γ

(∀y)

[
(Su)(∃x)γ(x,u,y) →

∨
σ∈p

(Su)(∃x)(γ(x,u,y) ∧ ¬σ)

]
.

Part 1). Given an uncountable model (B,<) with order type ω1 omitting
p, we can choose a countable (A,<) so that (B,<) is an LA-elementary end
extension of (A,<). Then (A,<) satisfies the extendibility sentences by Theo-
rem 3.4. Applying 2) in Definition 3.2, it is straightforward to prove the result
by induction on the length of the string S.

Before proving part 2, we need some further notation.

Definition 4.1 (Cp,A ) We say Cp,A holds if for every 〈γ(x,u, ybar), S〉 ∈ Γ,
partition of y into y1,y2 and every substitution of an a ∈ A for y2 to yield
γ(x,u,y1,a) in LA(A),

A |=

[
(Su)(∃x)γ(x,u,y1,a) →

∨
σ∈p

(Su)(∃x)(γ(x,u,y1,a) ∧ ¬σ(x))

]
.

The following essential claim is easy to check using the observation that θp

contains universal quantifiers while Cp,B contains their instantiations over B.

Claim 4.2 For any B, B |= θp is equivalent to Cp,B holds.

For part 2a) note that by Claim 4.2, we may assume Cp,B holds. But, if
Cp,B holds then B omits p since for any b ∈ B we can take θ ∈ LA(B) from
Cp,B to be x = b.

Part 2b) is immediate noting that if the hypothesis of one conjunct of θp is
satisfied in some Aα, then a particular one of the disjunctions in the conclusion
of the implication is true in Aα and so in every LA-elementary extension of Aα.

For part 2c), let A be a countable model of T and X a countable set of types
over the empty set. We will concentrate on a single p, just noting at the key
point that the omitting types theorem will allow us to lift all the θp for p ∈ X
to a single model.

Note that θp is actually in the form asserting a family of types is omitted (if
we write F →

∨
iGi as ¬F ∨

∨
iGi). More precisely, define for each γ(x,u,y) ∈

LA(A) and each string (Su) the LA(A)-type:

λp,γ,S(y) = {(Su)(∃x)γ(x,u,y)} ∪ {¬(Su)(∃x)γ(x,u,y) ∧ ¬σ : σ ∈ p}.

Now, just checking the definition,

Lemma 4.3 For any B, B omits λp,γ,S(y) for each γ, S with γ ∈ LA(∅) if and
only if B |= θp.

9



Let TA be the theory in LA((A)∪{d}) introduced in proving Theorem 3.4, let
φ be the end extension sentence from that proof. We want to show TA∪{φ} has
a model (thus a proper LA-elementary end extension (B,<) of (A,<)) omitting
each λp,γ .

Lemma 4.4 Let A be countable and suppose A |= θp. For any LA(A)-formula,
γ(x,u,y), any type p(x) and any formula π(d,y) ∈ LA(Ad), if (∃y)π(d,y) is
consistent with TA then

• (∃y)(π(d,y) ∧ ¬(Su)(∃x)γ(x,u,y)) is consistent with TA, or

• for some σ ∈ p,

(∃y)(π(d,y) ∧ (Su)(∃x)γ(x,u,y) ∧ ¬σ)

is consistent with TA.

Proof. Since A |= θp, by Claim 4.2, Cp,A holds. Because of this observation
we have suppressed additional parameters a which may occur in the formulas
π and γ. Suppose (∃y)π(d,y) is consistent with TA but

TA |= ¬(∃y)(π(d,y) ∧ ¬(Su)(∃x)γ(x,u,y)).

Then
TA |= (∀y)(π(d,y) → (Su)(∃x)γ(x,u,y)).

Recall from the definition of TA that the consistency of π(d,y) means

A′ |= (arb large x)(∃y)π(x,y).

Combining the last two,

A′ |= (arb large x)(∃y)(Su)(∃x)(γ(x,u,y) ∧ π(x,y)).

Let S′xyu denote (arb large x)(∃y)(Su). With this notation, we have

A′ |= (S′xyu)(∃x)(γ(x,u,y) ∧ π(x,y)).

Now, since Cp,A holds, for some σ ∈ p,

A′ |= (S′xyu)(∃x)[γ(x,u,y) ∧ π(x,y) ∧ ¬σ(x)].

Again using the definition of TA, we conclude

(∃y)(Su)(∃x)[γ(x,u,y) ∧ π(d,y) ∧ ¬σ(x)]

is consistent with TA, whence

(∃y)[π(d,y) ∧ (Su)(∃x)γ(x,u,y) ∧ ¬σ(x)]

is consistent with TA as required. 24.4

We conclude with the argument for Part 2c).
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Lemma 4.5 For any countable model (A,<), for each p ∈ X where X is count-
able,if A |= θp then (A,<) has a proper LA-elementary end extension (B,<) so
that B |= θp.

Proof. Since (A,<) is extendible (implied by θp), each of the countably
many types whose omission is encoded in φ is ‘non-principal’. By Lemma 4.4
the same holds for each λp,γ,S(y) with γ ∈ LA(A). By the omitting types
theorem, TA ∪ {φ} has a model (thus a proper LA-elementary end extension
(B,<) of (A,<)) omitting λp,γ,S for each γ ∈ LA(A) and in particular for each
γ ∈ LA(∅). Thus B |= θp. 24.5

Finally, we prove Part 3) of Theorem 1. Let X be a collection of complete
LA′(τ ′)-types (for some A′ ⊆ A and τ ′ ⊆ τ) over the empty set that are realized
in every uncountable model of T . If p ∈ X, then for any such (B,<) that is an
LA-elementary end extension of a countable (A,<),

(A,<) |= ¬θp.

That is, there is a formula ψp such that:

(A,<) |= (Su)(∃x)ψp,

but also for some σ ∈ p:

(A,<) |= ¬(Su)(∃x)(ψp ∧ ¬σ).

Note that while there are potentially continuum many formulas θp (infinite
disjunction over p), there are only countably many possible formulas ψp. So to
conclude that there only countably many possible p, we need only show that if
p 6= q then ψp 6= ψq. Since X is a collection of complete LA′(τ ′)-types, there is
some LA(τ ′)-formula σ with σ ∈ p and ¬σ ∈ q.

(A,<) |= ¬(Su)(∃x)ψp ∧ ¬σ.

(A,<) |= ¬(Su)(∃x)ψq ∧ ¬¬σ.

But of ψp = ψq, this contradicts that ”arb large” and ”there exists” dis-
tribute over disjunction. So we finish.
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