
Math 300, Spring 2004 Writing for Mathematics Monday Sections

The Mathematics for Essay 2

The purpose of these notes are to explain some of the mathematics behind Essay 2. Your
own essay should not just repeat these arguments but have a more geometric flavor. Write
about how you can physically place the blocks. You may assume basic facts about geometric
sums and series. Let r be any real number and let n be a non-negative integer. The sum

1 + r + r2 + · · ·+ rn (1)

is a geometric sum and the infinite series

1 + r + r2 + · · ·+ rn + · · · (2)

is a geometric series.
Suppose further that r 6= 1. Then the geometric sum (1) can be computed by the

formula

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
.

This fact, which you may assume, is easily proved proved by mathematical induction.
Now suppose that |r| < 1. Then limn−→∞ rn = 0 which means the geometric series (2)

converges to
1

1− r
by the preceding equation. We write

1 + r + r2 + · · ·+ rn + · · · = 1

1− r
(3)

to indicate that the series converges and to designate the limit of the sequence of partial
sums.

Your essay will involve the geometric series
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Since |1
2
| < 1, it follows by (3) that (4) converges and 1 +

1
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+ · · · = 2. The

Deluxe blocks are cubes with side lengths 1,
1

2
,

1

3
,

1

5
, . . . Your essay involves ana-

lyzing the sum of their side lengths
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The preceding series is called the harmonic series. Think of the terms of the geometric
series (4) as markers for grouping terms of the harmonic series as follows:
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We will find an overestimate and an underestimate for the sum of the terms in each of the
parenthesized groups. You will see a pattern emerging in our calculations:
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Using (5) and our underestimates, we see that
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Thus the partial sums of the harmonic series grow without bound which is expressed by
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Below is a formal proof of the the fact that the sums of terms in parenthesized groupings

lie between
1

2
and 1. You should not include the proof in your essay; the mathematics of

your essay is to be treated informally. Observe that the terms of a parenthesized group are

given by
1

2n + 1
, . . . ,

1

2n+1
for some n ≥ 1.

Lemma 1 Let n be a positive integer. Then
1

2
<

1

2n + 1
+ · · ·+ 1

2n+1
< 1.

Proof: Since 2n+1 = 2n + 2n the sum in the statement of the lemma has 2n terms. Each

term has the form
1

2n + `
for some 1 ≤ ` ≤ 2n and thus satisfies

1

2n+1
≤ 1
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≤ 1

2n
.



At least one of the terms is larger than
1

2
and one at least one is smaller then 1. Therefore
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