Math 215: Introduction to Advanced Mathematics
Last Problem Set

Due Tuesday May 1

Recall that n is divisible by d if there is a q with $qd = n$.
1. page 225 number 2, page 271: 1,3
2. Assume the division algorithm for the natural numbers. If a, b are integers with $a \geq 0$ and $b > 0$ there are unique (positive) integers q, r with $0 \leq r < b$ such that:

 $$ a = qb + r. $$

 Complete the proof for negative a. What are q and r if $a = -123$ and $b = 7$?
3. Recall the two definitions I gave on April 24.
 $(N, <, +)$ satisfies IND if for every $A \subset X$: If $1 \in A$ and $k \in A$ implies $k + 1 \in A$ then $A = N$.
 $(N, <, +)$ satisfies WO if every nonempty $A \subset X$ has a least element.
 I proved in class that WO implies IND. Show IND implies WO. (Note of course that both of these are actually true of the natural numbers.)