Supplement to First Midterm: Math 215

February 24, 2007
Name:
If you missed items 3,4 , or 5 on the midterm, you should do the problem with the same number below. I will grade papers that are signed by two people indicating that you have convinced each other that the solutions are correct.

3 Prove from the axioms on ordered fields that

1. There is no greatest real number a such that $a^{2}<2$.
2. There is no greatest rational number a such that $a^{2}<2$.
3. Explain the difference between the two results.

4 You may assume basic algebraic properties without explicit reference to the axioms in this problem. Recall that for integers d, s, n, 'd divides n means there is an s such that $n=d s$. Let d, x and y be integers. Prove

1. If d divides x and d divides y then d divides $x+y$.
2. If d divides $x+y$ and d divides y then d divides x.
3. Explain the connection between the two results.

5 Consider the following three statements:

1. If $\frac{6 x+5}{x+2}<5$, then $x<5$.
2. $x<5$ then $\frac{6 x+5}{x+2}<5$.
3. $x<5$ if and only if $\frac{6 x+5}{x+2}<5$.

Which of them are true? Which one of them is needed to prove by induction that if $a_{k+1}=\frac{6 a_{k}+5}{a_{k}+2}$ then for all $n, a_{n}<5$?

