Two problem solutions

John T. Baldwin

April 17, 2007

Page 184, number 9. Prove (11.1.4) that if there is an injection \(f : X \mapsto N_n \) then \(X \) is finite and the cardinality of \(X \) is at most \(n \).

Proof. We work by induction on \(n \). If \(n = 1 \), then an injection into \(N_1 \) must be onto. So \(f \) is invertible and \(X \) is a finite set with cardinality \(n \).

Induction Hypothesis: Suppose that for any \(X \) if there is an injection \(f \) from \(X \) into \(N_k \) then \(X \) is finite and the cardinality of \(X \) is at most \(k \).

Induction step: We must prove for any \(X \) if there is an injection \(f \) from \(X \) into \(N_{k+1} \) then \(X \) is finite and the cardinality of \(X \) is at most \(k + 1 \).

Case 1: \(k + 1 \) is not in the range of \(f \). Then \(f \) is an injection into \(N_k \) and the result is immediate from the induction hypothesis.

Case 2: \(k + 1 \) is in the range of \(f \). Say \(f(a) = k + 1 \). Now let \(g \) be the restriction of \(f \) to \(X - \{a\} \). Then \(g \) is an injection of \(X - \{a\} \) into \(N_k \). So again by induction, \(X - \{a\} \) is finite and \(|X - \{a\}| \) is some \(m \leq k \). Then by 10.2.1 (the addition principle), \(X = X \cup \{a\} \) is a disjoint union of finite sets, so \(X \) is finite and \(|X| = m + 1 \leq k + 1 \).

Page 184 number 10. Prove (11.1.6) that if \(X \) and \(Y \) are non-empty finite sets with \(|X| < |Y| \), there is no surjection from \(X \) onto \(Y \).

Proof. Suppose for contradiction that such \(f \) exists. By the definition of finite there exists an \(m < n \) and functions \(g_1, g_2 \) such that \(g_1 \) is a bijection from \(N_m \) onto \(X \) and \(g_2 \) is a bijection from \(N_m \) onto \(Y \). But then \(h = g_2^{-1} \circ f \circ g_1 \) is a surjection from \(N_m \) onto \(N_n \). Now we can find an injection \(h' : N_n \mapsto N_m \); \(h'(y) \) is defined to be the least \(k < m \) such that \(h(k) = y \). Now by 11.1.1 the existence of \(h' \) implies \(m \leq n \). This contradiction completes the proof.