Math 215: Introduction to Advanced Mathematics
Solution to trigonometry problem from Problem Set 1

Assignment: Write a careful complete solution of the following typical problem from a trigonometry text. Be sure you are clear about what K refers to.

Show \(\sin A = \sin B \) if and only if \(A = B + 360K \) or \(A + B = 180 + 360K \).

Correct statement of problem (replacing the ambiguity of a typical high school text).

Show \(\sin A = \sin B \) if and only if for some integer \(K \), \(A = B + 360K \) or \(A + B = 180 + 360K \).

Logic fact: We will use the observation made in class that for any propositions \(P, Q \): \((\exists k)(P(k) \text{ or } Q(k)) \) is equivalent to \((\exists k)P(k) \) or \((\exists k)Q(k) \).

Answer: Note first that for every integer \(K \) and any angle \(A \), \(\sin A = \sin(A + 360K) \). (We will discuss a more rigorous proof later in the semester but consider that fact as given now.)

Clearly if for some \(K \), \(A = B + 360K \), \(\sin A = \sin B \), since for all \(K \), \(\sin B = \sin(B + 360K) \). Moreover, if for some \(K \), \(A = 180 - B + 360K \), \(\sin A = \sin B \) since \(\sin A = \sin(180 - A) \) and for all \(K \), \(\sin(180 - A) = \sin(180 - A + 360K) \).

We have proved: if for some integer \(K \), \(A = B + 360K \) or \(A + B = 180 + 360K \) then \(\sin A = \sin B \). (The 'logic fact' allows us to distribute the quantifier.) Now we must show the converse.

We first consider the case \(0 \leq A, B < 360 \).

Suppose first both \(A \) and \(B \) are angles with between \(0 \leq A \leq 180 \) and \(0 \leq B \leq 180 \). Then, looking at the unit circle, \(\sin A = \sin B \) implies either \(A = B \) or \(A = 180 - B \).

There is an additional possibility. If \(0 \leq A, B < 360 \), by examining the unit circle we see either the pair \(A \) and \(B \) satisfy the case in the last paragraph or both satisfy \(180 < A, B < 360 \). And then there are two possibilities, \(A = B \) or \(A + B = 540 \). The second possibility can be written \(A + B = 180 + 360 \).

We now reduce to the case \(0 \leq A, B < 360 \).

Suppose \(\sin A = \sin B \).

For any angle \(A \) there is an integer \(K \) and an \(A' \) with \(0 \leq A' < 360 \) so that \(A = A' + 360K \). So we can choose \(A', B' \), with \(0 < A', B' < 360 \) and integers \(K_1, K_2 \) so that \(A = A' + 360K_1 \) and \(B = B' + 360K_2 \).
Now sin \(A = \sin B \) implies sin \(A' = \sin B' \) and so by our treatment of angles between 0 and 360, we know there are three possibilities. \(A' = B', A' + B' = 180, A' + B' = 540. \)

Now by substituting we will see that in the first case for some \(K \), \(A = B + 360K \) and in the other two cases, for some \(K \), \(A + B = 180 + 360K \). Again, the logic fact allows us to do find \(K \) separately for each case.

We carry out the detail of the substitution only for the third case. We have assumed \(A = A' + 360K_1 \) and \(B = B' + 360K_2 \) and by choice of case \(A' + B' = 540 \).

We have \(A = A' + 360K_1 \). That is, \(A = (540 - B') + 360K_1 \) and therefore \(A = (540 - (B - 360K_2)) + 360K_1 \). So \(A = 180 - B + 360(K_1 - K_2 + 1) \). We have the result with \(K = K_1 - K_2 + 1 \).