Math 300: Writing in Mathematics

> John T. Baldwin

Math 300: Writing in Mathematics

John T. Baldwin

January 21, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

LOGISTICS

Math 300: Writing in Mathematics

John T. Baldwin

> Webpage: www.math.uic.edu/j̃baldwin email: jbaldwin@uic.edu CLASS APR 1 OR MAR 30 office hours: 10:00 AM M; 11 AM T 11 AM W (tentative) Assignments will be on the web. There will be 3 essays (2 drafts of each and outline of 2nd two) and various short writing assignments. Some will be in class and some for homework.

How not to write!

Math 300: Writing in Mathematics

> John T. Baldwin

> > What does the following sentence from the Chicago Tribune on Jan. 8, 2004 mean?

Between 6 and 8 p.m. most days in November, up to 70 per cent of flights arrived late at O'Hare.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

	References
Math 300: Writing in Mathematics John T. Baldwin	Why do we give references?

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Some possible answers

Math 300: Writing in Mathematics

> John T. Baldwin

> > Justify our statements. Enable the reader to learn more. Give credit to others.

> > > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Plagiarism
Math 300: Writing in Mathematics John T. Baldwin	
	What is plagiarism?

Some possible answers

Math 300: Writing in Mathematics

> John T. Baldwin

Google: a piece of writing that has been copied from someone else and is presented as being your own work

en.wikipedia.org/wiki/Plagiarism: Plagiarism is the unauthorized use or close imitation of the language and thoughts of another author and the representation of them as one's own original work.

http://www.google.com/search?hl=en&client= firefox-a&rls=org.mozilla:en-US: official&hs=XYb&defl=en&q=define: plagiarism&sa=X&oi=glossary_definition&ct=title

What is the interest rate?

Math 300: Writing in Mathematics

John T. Baldwin

A bank issues the following prospectus for a CD.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

minimum investment: \$10,000 interest rate: 3.92 % Compounded daily: annual percentage yield: 4 % What does this mean?

Compound interest formula:

Math 300: Writing in Mathematics

> John T. Baldwin

> > $A = P(1+i)^n.$

A is amount after n periods when a principal of P dollars invested at an interest rate of i per period.

Explanation of Bank situation:

Math 300: Writing in Mathematics

> John T. Baldwin

> > interest rate 3.92 % annual percentage interest: 4% With calculator.

> > > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Discussion of First Essay

Math 300: Writing in Mathematics

> John T. Baldwin

> > Pull up assignment and discuss.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some variants:

Math 300: Writing in Mathematics

John T. Baldwin

\$10,000 at 3.92% compounded daily for 5 years (365 day year)
12165.14103
\$10,000 at 3.92% compounded daily for 5 years (360 day year)
12165.13925
\$10,000 at 4% compounded annually for 5 years
12166.53
END OF Jan 14

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Derivation of Compound Interest formula

Math 300: Writing in Mathematics

> John T. Baldwin

> > 1 period: A = P(1 + i)2 periods: A = [P(1 + i)](1 + i)3 periods: A = [P(1 + i)(1 + i)](1 + i)*n* periods: $A = P(1 + i)^n$

> > > ▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Compounding at shorter periods

Math 300: Writing in Mathematics

> John T. Baldwin

> > 5 % compounded quarterly for 3 years: 10,000(1 + $\frac{.04}{4})^12$ Further calculator examples.

Continuous Compounding

Math 300: Writing in Mathematics

John T. Baldwin

Let i be the annual interest rate and n be the number of compounding periods per year. The amount after t years is:

$$A = P(1+\frac{i}{n})^{nt} = P((1+\frac{i}{n})^n)^t$$

We want to know what happens as *n* tends to infinity. What $\lim_{n\to\infty} (1 + \frac{i}{n})^n$? Answer: e^i .

$$A = Pe^{i\pi}$$

Rule of 72

Math 300: Writing in Mathematics

> John T. Baldwin

Rule: The product of interest rate i in percent times the number t of periods for the principal to double is 72:

$$it = 72.$$

Justification: We use continuous interest. We want to know when the amount A is twice the original principal. Thus we want to determine the relation between i and t when

$$2P = Pe^{it}$$
.

I.e.

$$2=e^{it}.$$

Taking the ln of each side of the equation we have: $.693 \approx it$. Taking the interest rate in per cent amounts to multiplying both sides of the equation by 100. And we round off 69.3 to 72 so there will be many divisors.

Calculating the Limit

Math 300: Writing in Mathematics

John T. Baldwin

> This is too technical for the papers you are writing. **Definition** $\ln x = \int_{1}^{x} \frac{1}{t} dt$. By the fundamental theorem of calculus **Fact** $\ln' x = \frac{1}{x}$ So $\ln'(1) = 1$.

Math 300: Writing in Mathematics

> John T. Baldwin

But by the definition of derivative:

$$1 = \ln'(1)$$

=
$$\lim_{n \to \infty} \frac{\ln(1 + \frac{1}{n}) - \ln 1}{\frac{1}{n}}$$

=
$$\lim_{n \to \infty} n(\ln(1 + \frac{1}{n}))$$

=
$$\lim_{n \to \infty} \ln((1 + \frac{1}{n})^n)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Math 300: Writing in Mathematics

> John T. Baldwin

So
$$1 = \ln \lim_{n \to \infty} ((1 + \frac{1}{n})^n)$$

and therefore
 $e^1 = \lim_{n \to \infty} ((1 + \frac{1}{n})^n).$