Math 300: Writing in Mathematics

John T. Baldwin

January 21, 2009

LOGISTICS

Baldwin

Webpage: www.math.uic.edu/jubaldwin email: jbaldwin@uic.edu
CLASS APR 1 OR MAR 30 office hours: 10:00 AM M; 11 AM T 11 AM W (tentative) Assignments will be on the web.
There will be 3 essays (2 drafts of each and outline of 2 nd two) and various short writing assignments. Some will be in class and some for homework.

How not to write!

What does the following sentence from the Chicago Tribune on Jan. 8, 2004 mean?

Between 6 and 8 p.m. most days in November, up to 70 per cent of flights arrived late at O'Hare.

References

Math 300:
Writing in Mathematics

John T
Baldwin

Why do we give references?

Some possible answers

Math 300:
Writing in
Mathematics
John T
Baldwin

Justify our statements.
Enable the reader to learn more. Give credit to others.

Plagiarism

Math 300:
Writing in Mathematics

John T
Baldwin

What is plagiarism?

Some possible answers

Google: a piece of writing that has been copied from someone else and is presented as being your own work
en.wikipedia.org/wiki/Plagiarism:
Plagiarism is the unauthorized use or close imitation of the language and thoughts of another author and the representation of them as one's own original work.
http://www.google.com/search?hl=en\&client= firefox-a\&rls=org.mozilla:en-US:
official\&hs=XYb\&defl=en\&q=define:
plagiarism\&sa=X\&oi=glossary_definition\&ct=title

What is the interest rate?

A bank issues the following prospectus for a CD.
minimum investment: $\$ 10,000$
interest rate: 3.92 \%
Compounded daily:
annual percentage yield: 4 \%
What does this mean?

Compound interest formula:

Math 300:
Writing in
Mathematics
John T
Baldwin
$A=P(1+i)^{n}$.
A is amount after n periods when a principal of P dollars invested at an interest rate of i per period.

Explanation of Bank situation:

interest rate 3.92 \%
annual percentage interest: 4\%
With calculator.

Discussion of First Essay

Pull up assignment and discuss.

Some variants:

$\$ 10,000$ at 3.92% compounded daily for 5 years (365 day year) 12165.14103
$\$ 10,000$ at 3.92% compounded daily for 5 years (360 day year) 12165.13925
$\$ 10,000$ at 4% compounded annually for 5 years 12166.53

END OF Jan 14

Derivation of Compound Interest formula

Math 300:
Writing in Mathematics

John T Baldwin

1 period: $A=P(1+i)$
2 periods: $A=[P(1+i)](1+i)$
3 periods: $A=[P(1+i)(1+i)](1+i)$
n periods: $A=P(1+i)^{n}$

Compounding at shorter periods

Math 300:
Writing in
Mathematics
John T
Baldwin
5% compounded quarterly for 3 years: $10,000\left(1+\frac{.04}{4}\right)^{1} 2$ Further calculator examples.

Continuous Compounding

Math 300:
Writing in
Mathematics
John T
Baldwin

Let i be the annual interest rate and n be the number of compounding periods per year. The amount after t years is:

$$
A=P\left(1+\frac{i}{n}\right)^{n t}=P\left(\left(1+\frac{i}{n}\right)^{n}\right)^{t}
$$

We want to know what happens as n tends to infinity. What $\left.\lim _{n \rightarrow \infty}\left(1+\frac{i}{n}\right)^{n}\right)$?
Answer: e^{i}.

$$
A=P e^{i t}
$$

Rule of 72

Math 300:
Writing in Mathematics

John T
Baldwin

Rule: The product of interest rate i in percent times the number t of periods for the principal to double is 72 :

$$
i t=72 .
$$

Justification: We use continuous interest. We want to know when the amount A is twice the original principal. Thus we want to determine the relation between i and t when

$$
2 P=P e^{i t}
$$

I.e.

$$
2=e^{i t} .
$$

Taking the \ln of each side of the equation we have: $.693 \approx i t$. Taking the interest rate in per cent amounts to multiplying both sides of the equation by 100. And we round off 69.3 to 72 so there will be many divisors.

Calculating the Limit

This is too technical for the papers you are writing. Definition $\ln x=\int_{1}^{x} \frac{1}{t} d t$.
By the fundamental theorem of calculus
Fact $\ln ^{\prime} x=\frac{1}{x}$
So $\ln ^{\prime}(1)=1$.

Math 300:
Writing in
Mathematics
John T
Baldwin

But by the definition of derivative:

$$
\begin{aligned}
1 & =\ln ^{\prime}(1) \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)-\ln 1}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} n\left(\ln \left(1+\frac{1}{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right)
\end{aligned}
$$

So $1=\ln \lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{n}\right)$
and therefore
$e^{1}=\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{n}\right)$.

