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The first approximation to a quasiminimal axiomatization of complex exponentiation considers short exact
sequences of the following form.

0 → Z → H → F ∗ → 0. (1)

H is a torsion-free divisible abelian group (written additively), F is an algebraically closed field, and exp is the
homomorphism from (H, +) to (F ∗, ·), the multiplicative group of F . We can code this sequence as a structure
for a language L:

(H, +, E, S),

where E(h1, h2) iff exp(h1) = exp(h2) and we pull back sum by the defining H |= S(h1, h2, h3) iff F |=
exp(h1) + exp(h2) = exp(h3). Thus H now represents both the multiplicative and additive structure of F .

To guarantee Assumption ??.3.) we expand the language further. Let exp : H 7→ F ∗. For each affine variety over
Q, V̂ (x1, . . . xn), we add a relation symbol V interpreted by H |= V (h1, . . . , hn) iff F |= V (exp(h1), . . . , exp(hn)).
This includes the defintion of S mentioned above; we have some fuss to handle the pullback of relations which
have 0 in their range.

Lemma 1 There is an Lω1,ω-sentence Σ such that there is a 1-1 correspondence between models of Σ and
sequences (1).

The sentence asserts first that the quotient of H by E with + corresponding to × and S to + is an algebraically
closed field. We use Lω1,ω to guarantee the kernel is 1-generated. This same proviso insures that the relevant
closure condition has countable closures.

Definition 2 For X ⊂ H |= Σ,
cl(X) = exp−1(acl(exp(X))

where acl is the field algebraic closure in F .

Using this definition of closure the key result of [?] asserts:
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Theorem 3 Σ is quasiminimal excellent with the countable closure condition and categorical in all uncountable
powers.

Our goal is this section is to prove this result modulo one major algebraic lemma. We will frequently work
directly with the sequence (1) rather than the coded model of Σ. Note that (1) includes the field structure on
F . That is, two sequences are isomorphic if there are commuting maps H to H ′ etc. where the first two are
group isomorphims but the third is a field isomorphism.

It is easy to check that Conditions I and IV and countable closures are satisfied: cl gives a combinatorial
geometry such that the countable closure of countable sets is countable. We need more notation about the
divisible closure (in the multiplicative group of the field to understand the remaining conditions.

Definition 4 By a divisibly closed multiplicative subgroup associated with a ∈ C∗, aQ, we mean a choice of
a multiplicative subgroup containing a and isomorphic to the additive group Q.

Definition 5 We say b
1
m
1 ∈ b

Q
1 , . . . b

1
m

` ∈ b
Q
` ⊂ C∗, determine the isomorphism type of b

Q
1 , . . . b

Q
` ⊂ C∗ over

the subfield k of C if given subgroups of the form c
Q
1 , . . . c

Q
` ⊂ C∗ and φm such that

φm : k(b
1
m
1 . . . b

1
m

` ) → k(c
1
m
1 . . . c

1
m

` )

is a field isomorphism it extends to

φ∞ : k(bQ1 , . . . b
Q
` ) → k(cQ1 , . . . c

Q
` ).

To see the difficulty consider the following example.

Example 6 Let a1 and a2 be linearly independent over Q complex numbers such that (a1 − 1)2 = a2. Suppose
φ, which maps Q(a1, a2) to Q(c1, c2), is a field isomorphism. φ not extend to an isomorphism of their divisible
hulls, we might have a1 − 1 =

√
a2 but c1 − 1 = −√c2.

As in Lecture 3, for G a subgroup of H, H ′ and H, H ′ |= Σ, a partial function φ on H is called a G-monomorphism
if it preserves L-quantifier free formulas with parameters from G.

Fact 7 Suppose b1, . . . b` ∈ H and c1, . . . c` ∈ H ′ are each linearly independent sequences (from G) over Q. Let
Ĝ be the subfield generated by exp(G). If Ĝ(exp(b1)Q, . . . exp(b`)Q) ≈ Ĝ(exp(c1)Q, . . . exp(c`)Q) as fields, then
mapping bi to ci is a G-monomomorphism preserving each variety V .

Proof. Let G ⊂ H and suppose rational qi, ri are rational numbers, hi ∈ H − G, gi ∈ G.
Then H |= V (q1b1, . . . q`b`, r1g1, . . . rmgm) iff Ĥ |= V̂ (exp(q1b1), . . . exp(q`b`), exp(r1g1), . . . exp(rmgm)) iff
Ĝ(exp(b1)Q, . . . exp(b`)Q, exp(g1)Q, . . . exp(gm)Q) |= V̂ (exp(q1b1), . . . exp(q`b`), exp(r1g1), . . . exp(rmgm)).

From this fact, it is straightforward to see that Condition II in the definition of quasiminimal excellence holds.
For II.i) we need that there is only one type of a closure-independent sequence. But Fact 7 implies that for
b ∈ H to be closure independent, the associated exp(b) must be algebraically independent and of course there is
a unique type of an algebraically independent sequence. For II.ii) holds since added to language of Σ predicates
for the pull-back of all quantifier-free relations on the field F . (Zilber doesn’t do this.)
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For Condition III and the excellence condition we need an algebraic result. In the following,
√

1 denotes the
subgroup of roots of unity. We call this result the thumbtack lemma based on the following visualization of
Kitty Holland. The various nth roots of b1, . . . bm hang on threads from the bi. These threads can get tangled;
but the theorem asserts that by sticking in a finite number of thumbtacks one can ensure that the rest of
strings fall freely. The proof involves the theory of fractional ideals of number fields, Weil divisors, and the
normalization theorem. For a1, . . . ar in C, we write gp(a1, . . . ar) for the multiplicative subgroup generated
by a1, . . . ar. The following general version of the theorem is applied for various sets of parameters to prove
quasiminimal excellence.

In the following Lemma we write
√

1 for the group of roots of unity. If any of the Li are defined, the reference
to
√

1 is redundant. We write gp(a) for the multiplicative subgroup generated by a.

Remark 8 Let k be an algebraically closed subfield in C and let a ∈ C − k. A field theoretic description of
the relation of a to k arises by taking the irreducible variety over k realized by a. a is a generic realization
of variety given by a finite conjunction φ(x,b) of polynomials generating the ideal in k[x] of those polynomials
which annihilate a. From a model theoretic standpoint we can say, choose b so that the type of a/k is the
unique nonforking extension of tp(a/b). We use the model theoretic formulation below. See [?], page 39.

Theorem 9 (thumbtack lemma) [?]

Let P ⊂ C be a finitely generated extension of Q and L1, . . . Ln algebraically closed subfields of the algebraic

closure P̂ of P . Fix multiplicatively divisible subgroups a
Q
1 , . . . a

Q
r with a1, . . . ar ∈ P̂ and b

Q
1 , . . . b

Q
` ⊂ C∗. If

b1 . . . b` are multiplicatively independent over gp(a1, . . . ar) ·
√

1 ·L∗1 · . . . L∗n then for some m b
1
m
1 ∈ b

Q
1 , . . . b

1
m

` ∈
b
Q
` ⊂ C∗, determine the isomorphism type of b

Q
1 , . . . b

Q
` over P (L1, . . . Ln,

√
1, a
Q
1 , . . . a

Q
r ).

Lemma 10 Condition III of quasiminimal excellence holds.

Proof. We must show: If G |= Σ and f is a partial G-monomorphism from H to H ′ with finite domain
X = {x1, . . . , xr} then for any y ∈ H there is y′ in some H ′′ with H ′ ≺K H ′′ such that f ∪ {〈y, y′〉} extends f
to a partial G-monomorphism. Since G |= Σ, exp(G) is an algebraically closed field. For each i, let ai denote
exp(xi) and similarly for x′i, a

′
i. Choose a finite sequence d ∈ exp(G) such that the sequence (a1, . . . ar) is

independent (in the forking sense) from exp(G) over d and tp(a1, . . . ar)/d) is stationary. Now we apply the
thumbtack lemma. Let P0 be Q(d). Let n = 1 and L1 be the algebraic closure of P0. We set P0(d, a1, . . . ar)
as P . Take b1 as exp(y) and set ` = 1.

Now apply Lemma 9 to find m so that b
1
m
1 determines the algebraic type of (b1)Q over L1(a

Q
1 , . . . a

Q
r ) =

P0(L1, a
Q
1 , . . . a

Q
r ). Let f̂ denote the map f induces from Ĥ to Ĥ ′ over Ĝ. Choose b′1

1
m to satisfy the

quantifier free field type of f̂(tp(b
1
m
1 /L1(a

Q
1 , . . . a

Q
r ). Now by Lemma 9, f̂ extends to field isomorphism

between L1(a
Q
1 , . . . a

Q
r , b

Q
1 )) and L1((a′1)

Q, . . . (a′r)Q, (b′1)
Q). Since the sequence a1, . . . ar) is independent

(in the forking sense) from exp(G) over L1, we can extend this map to take exp(G)(aQ1 , . . . a
Q
r , b

Q
1 ) to

exp(G)((a′1)
Q, . . . (a′r)Q, (b′1)

Q) and pull back to find y′; this suffices by Fact 7.

¤10

Note there is no claim that y′ ∈ H ′ and there can’t be.

One of the key ideas discovered by Shelah in the investigation of non-elementary classes is that in order for types
to be well-behaved one may have to make restrictions on the domain. (E.g., we may be able to amalgamate
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types over models but not arbitrary types.) This principle is illustrated by the following definition and result
of Zilber.

Definition 11 C ⊆ F is finitary if C is the union of the divisible closure (in C∗) of a finite set and finitely
many algebraically closed fields.

Now we establish Condition IV, excellence. Note that this is a stronger condition than excellence since there is
no independence requirement on the Gi.

Lemma 12 Let G1, . . . Gn ⊂ H all be models of Σ and suppose each has finite cl-dimension. If h1, . . . h` ∈
G− = cl(G1 ∪ . . . Gn) then there is finite set A ⊂ G− such that any φ taking h1, . . . , h` into H which is an
A-monomorphism is also a G−-monomorphism.

Let Li = exp(Gi) for i = 1, . . . , n; bq
j = exp(qhj) for j = 1, . . . , ` and q ∈ Q. We may assume the hi are linearly

independent over the vector space generated by the Gi; this implies the bi are muliplicatively independent over
L∗1 · L∗2 · . . . L∗n. Now apply the thumbtack lemma with r = 0. This gives an m such that the field theoretic

type of b
1
m
1 , . . . , b

1
m

` determines the quantifier free type of (h1, . . . , h`) over G−. So we need only finitely many
parameters from G− and we finish.

To prove the following result, apply the thumbtack lemma with the Li as the fields and the ai as the finite set.

Corollary 13 Any almost finite n-type over a finitary set is a finite n-type.

Since we have established all the conditions for quasiminimal excellence, we have proved Theorem 3.

Keisler[?] proved Morley’s categoricity theorem for sentences in Lω1,ω, assuming that the categoricity model
was ℵ1-saturated. We give two examples showing this hypothesis is necessary. Marcus [?] showed:

Fact 14 There is a first order theory T with a prime model M such that

1. M has no proper elementary submodel.

2. M contains an infinite set of indiscernibles.

Exercise 15 Show that the Lω1,ω-sentence satisfied only by atomic models of the theory T in Fact 14 has a
unique model.

Example 16 Now construct an Lω1,ω-sentence ψ whose models are partitioned into two sets; on one side is
an atomic model of T , on the other is an infinite set. Then ψ is categorical in all infinite cardinalities but no
model is ℵ1-homogeneous because there is a countably infinite maximal indiscernible set.

Now we see that the example of this chapter has the same inhomogeneity property.

Consider the basic diagram:

0 → Z → H → F ∗ → 0. (2)
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Let a be a trancendental number in F ∗. Fix h with exp(h) = a and define an = exp h
n + 1 for each n. Now

choose hn so that exp(hn) = an. Let Xr = {hi : i ≤ r}. Note that am = a
1
m +1 where we have chosen a specific

mth root.

Claim 17 pr = tp(h/Xr) is a principal type.

Proof. We make another application of the thumbtack Lemma 9 with Q(exp(span(Xr)) as P , a1, . . . ar as
themselves, all Li are empty, and a as b1. By the lemma there is an m such that a

1
m determines the isomorphism

type of aQ over P (aQ1 , . . . a
Q
r ). That is if φm is the minimal polynomial of a

1
m over P , (∃y)φm(y) ∧ ym = x

generates tp(a/ exp(span(Xr))). Pulling back by Lemma 7, we see tp(h/Xr) is principal and even complete
for Lω1,ω. In particular, for any m′ ≥ m, any two m′th roots of a have the same type over exp(Xr). But for
sufficiently large r, one of these m′th roots is actually in Xr so tp(a/Xr) does not imply p = tp(a/X) for any X.
That is, tp(a/X) is not implied by its restriction to any finite set. And by Lemma 7 this implies tpω1,ω(h/X)
is not implied by its restriction to any finite set.

Now specifically to answer the question of Keisler [?], page 123, we need to show there is a sentence ψ in a
countable fragment L∗ of Lω1,ω such that ψ is ℵ1-categorical but has a model with is not (ℵ1, L

∗)-homogeneous.
Fix L∗ as a countable fragment containing the categoricity sentence for ‘covers’. We have shown no formula of
Lω1,ω (let alone L∗) with finitely many parameters from X implies p. By the omitting types theorem for L∗,
there is a countable model H0 of ψ which contains an L∗-equivalent copy X ′ of X and omits the associated p′.
By categoricity, H0 imbeds into H. But H also omits p′. As, if h′ ∈ H, realizes p′, then exp(h′) ∈ acl(X ′) ⊆ H0

so since the kernel of exp is standard, h′ ∈ H0, contradiction. Thus the type p′ cannot be realized so H is not
homogeneous.
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