In this section we consider \((K, \prec_K)\) to be the class of atomic models of a first order theory which is L-excellent. Our goal is to show that if \(K\) is \(\omega\)-stable then it is stable in all cardinalities.

The crucial point is that if \(M = \bigcup_{i<\alpha} M_i, p \neq q \in S_{\text{at}}(M)\) then for some \(i < \alpha, p \vdash M_i \neq q \vdash M_i\), because the types are syntactic.

Acknowledgement: This proof is virtually a copy of the first order case; the actual write-up is pirated from a more general version being developed by Baldwin-Kueker-Vandieren.

Theorem 1 If \(K\) is excellent and \(\aleph_0\)-stable then \(K\) is stable in all \(\kappa\).

Proof. We show that if \(K\) in every cardinality less than \(\kappa\), then it is \(\kappa\)-stable.

Take any \(M\) of cardinality \(\kappa\). We may write \(M\) as the union of a continuous chain \(\langle M_i | i < \kappa\rangle\) under \(\prec_K\) of models of cardinality \(< \kappa\) in \(K\).

We say that a type over \(M_i\) has many extensions to mean that it has \(> \kappa\) distinct extensions to a type over \(M\).

Claim 2 For every \(i\), there is some type over \(M_i\) with many extensions.

Proof. Each type over \(M^*\) is the extension of some type over \(M_i\) and, by our assumption, there are less than \(\kappa\) many types over \(M_i\), so at least one of them must have many extensions.

Claim 3 For every \(i\), if the type \(p\) over \(M_i\) has many extensions, then for every \(j > i\), \(p\) has an extension to a type \(p'\) over \(M_j\) with many extensions.

Proof. Every extension of \(p\) to a type over \(M^*\) is the extension of some extension of \(p\) to a type over \(M_j\). By our assumption there are less than \(\kappa\) many such extensions to a type over \(M_j\), so at least one of them must have many extensions.

Claim 4 For every \(i\), if the type \(p\) over \(M_i\) has many extensions, then for all sufficiently large \(j > i\), \(p\) can be extended to two types over \(M_j\) each having many extensions.
Proof. By Claim 3 it suffices to establish the result for some $j > i$. So assume that there is no $j > i$ such that p has two extensions to types over M_j each having many extensions. Then, by Claim 3 again, for every $j > i$, p has a unique extension to a type p_j over M_j with many extensions. Let S^* be the set of all extensions of p to a type over $M^* - \{S^*\} \geq \kappa^+$. Then S^* is the union of S_0 and S_1, where S_0 is the set of all q in S^* such that $p_j \not< q$ for all $j > i$, and S_1 is the set of all q in S^* such that q does not extend p_j for some $j > i$. Now if q_1 and q_2 are different types in S^* then, since types are syntactic their restrictions to some M_j must differ. Hence their restrictions to all sufficiently large M_j must differ. Therefore, S_0 contains at most one type. On the other hand, if q is in S_1 then, for some $j > i$, $q \mid M_j$ is an extension of p to a type over M_j which is different from p_j, hence has at most κ extensions to a type over M^*. Since there are $< \kappa$ types over each M_j (by assumption) and just κ models M_j there can be at most κ types in S_1. Thus S^* contains at most κ^+ types, a contradiction.

Claim 5 There is a countable $M \preceq_K M^*$ such that there are 2^{\aleph_0} types over M.

Proof. Let p be a type over M_0 with many extensions. By Claim 4 there is a $j_1 > 0$ such that p has two extensions p_0, p_1 to types over M_{j_1} with many extensions. Iterating this construction we find a sequence of countable models M_{j_n} and a tree p_s of types for $s \in 2^\omega$ with the 2^n types p_s (where s has length n) all over M_{j_n} and each p_s has many extensions. Let \hat{M} be the union of the M_{j_n}. Now for each $\sigma \in 2^\omega$, $p_\sigma = \bigcup_{s \subseteq \sigma} p_s$ is, by type realizability, in $S_{\text{at}}(\hat{M})$ contradicting ω-stability.

This concludes the proof of Theorem 1.