Lecture 12: Excellence implies stability transfers

John T. Baldwin Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

October 22, 2003

In this section we consider (K, \prec_K) to be the class of atomic models of a first order theory which is L-excellent.

Our goal is to show that if K is ω -stable then it is stable in all cardinalities.

The crucial point is that if $M = \bigcup_{i < \alpha} M_i$, $p \neq q \in S_{at}(M)$ then for some $i < \alpha$, $p \upharpoonright M_i \neq q \upharpoonright M_i$, because the types are syntactic.

Acknowlegement: This proof is virtually a copy of the first order case; the actual write-up is pirated from a more general version being developed by Baldwin-Kueker-Vandieren.

Theorem 1 If K is excellent and \aleph_0 -stable then K is stable in all κ .

Proof. We show that if **K** in every cardinality less than κ , then it is κ -stable.

Take any M of cardinality κ . We may write M as the union of a continuous chain $\langle M_i | i < \kappa \rangle$ under $\prec_{\mathbf{K}}$ of models of cardinality $< \kappa$ in \mathbf{K} .

We say that a type over M_i has many extensions to mean that it has $> \kappa$ distinct extensions to a type over M.

Claim 2 For every *i*, there is some type over M_i with many extensions.

Proof. Each type over M^* is the extension of some type over M_i and, by our assumption, there are less than κ many types over M_i , so at least one of them must have many extensions.

Claim 3 For every *i*, if the type *p* over M_i has many extensions, then for every j > i, *p* has an extension to a type p' over M_j with many extensions.

Proof. Every extension of p to a type over M^* is the extension of some extension of p to a type over M_j . By our assumption there are less than κ many such extensions to a type over M_j , so at least one of them must have many extensions.

Claim 4 For every *i*, if the type *p* over M_i has many extensions, then for all sufficiently large j > i, *p* can be extended to two types over M_j each having many extensions.

Proof. By Claim 3 it suffices to establish the result for some j > i. So assume that there is no j > i such that p has two extensions to types over M_j each having many extensions. Then, by Claim 3 again, for every j > i, p has a unique extension to a type p_j over M_j with many extensions. Let S^* be the set of all extensions of p to a type over $M^* - \operatorname{so} |S^*| \ge \kappa^+$. Then S^* is the union of S_0 and S_1 , where S_0 is the set of all q in S^* such that $p_j < q$ for all j > i, and S_1 is the set of all q in S^* such that q does not extend p_j for some j > i. Now if q_1 and q_2 are different types in S^* then, since types are syntactic their restrictions to some M_i must differ. Hence their restrictions to all sufficiently large M_j must differ. Therefore, S_0 contains at most one type. On the other hand, if q is in S_1 then, for some j > i, $q \upharpoonright M_j$ is an extension of p to a type over M_j which is different from p_j , hence has at most κ extensions to a type over M^* . Since there are $< \kappa$ types over each M_j (by assumption) and just κ models M_j there can be at most κ types in S_1 . Thus S^* contains at most κ^+ types, a contradiction.

Claim 5 There is a countable $M \prec_{\mathbf{K}} M^*$ such that there are 2^{\aleph_0} types over M.

Proof. Let p be a type over M_0 with many extensions. By Claim 4 there is a $j_1 > 0$ such that p has two extensions p_0, p_1 to types over M_{j_1} with many extensions. Iterating this construction we find a sequence of countable models M_{j_n} and a tree p_s of types for $s \in 2^{\omega}$ with the 2^n types p_s (where s has length n) all over M_{j_n} and each p_s has many extensions. Let \hat{M} be the union of the M_{j_n} . Now for each $\sigma \in 2^{\omega}$, $p_{\sigma} = \bigcup_{s \subset \sigma} p_s$ is, by type realizability, in $S_{\rm at}(\hat{M})$ contradicting ω -stability.

This concludes the proof of Theorem 1.