Definition 1: A pregeometry is a set \(G \) together with a dependence relation
\[\text{cl} : \mathcal{P}(G) \to \mathcal{P}(G) \]
satisfying the following axioms.

A1. \(\text{cl}(X) = \bigcup \{ \text{cl}(X') : X' \subseteq \text{fin} X \} \)

A2. \(X \subseteq \text{cl}(X) \)

A3. \(\text{cl}(\text{cl}(X)) = \text{cl}(X) \)

A4. If \(a \in \text{cl}(Xb) \) and \(a \notin \text{cl}(X) \), then \(b \in \text{cl}(Xa) \).

If points are closed the structure is called a geometry.

Definition 2: A geometry is homogeneous if for any closed \(X \subseteq G \) and \(a, b \in G - X \) there is a permutation of \(G \) which preserves the closure relation (i.e. an automorphism of the geometry) which fixes \(X \) pointwise and takes \(a \) to \(b \).

Exercise 3: If \(G \) is a homogeneous geometry, \(X, Y \) are maximally independent subsets of \(G \), there is an automorphism of \(G \) taking \(X \) to \(Y \).

Definition 4: 1. The structure \(M \) is strongly minimal if every first order definable subset of any elementary extension \(M' \) of \(M \) is finite or cofinite.

2. The theory \(T \) is strongly minimal if it is the theory of a strongly minimal structure.

3. \(a \in \text{acl}(X) \) if there is a first order formula with finitely solutions over \(X \) which is satisfied by \(a \).

Definition 5: Let \(X, Y \) be subsets of a structure \(M \). An elementary isomorphism from \(X \) to \(Y \) is 1-1 map from \(X \) onto \(Y \) such that for every first order formula \(\phi(v) \), \(M \models \phi(x) \) if and only if \(M \models \phi(fx) \).

Exercise 6: Find \(X, Y \) subsets of a structure \(M \) such that \(X \) and \(Y \) are isomorphic but not elementarily isomorphic.

Exercise 7: Let \(X, Y \) be subsets of a structure \(M \). If \(f \) takes \(X \) to \(Y \) is an elementary isomorphism, \(f \) extends to an elementary isomorphism from \(\text{acl}(X) \) to \(\text{acl}(Y) \).
Exercise 8 Show a complete theory \(T \) is strongly minimal if and only if it has infinite models and

1. algebraic closure induces a pregeometry on models of \(T \);
2. any bijection between acl-bases for models of \(T \) extends to an isomorphism of the models.

Exercise 9 A strongly minimal theory is categorical in any uncountable cardinality.