Lecture 2: Combinatorial Geometries

John T. Baldwin Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

August 27, 2003

Definition 1 A pregeometry is a set G together with a dependence relation

 $cl: \mathcal{P}(G) \to \mathcal{P}(G)$

satisfying the following axioms.

A1. $cl(X) = \bigcup \{ cl(X') : X' \subseteq_{fin} X \}$ A2. $X \subseteq cl(X)$ A3. cl(cl(X)) = cl(X)

A4. If $a \in cl(Xb)$ and $a \notin cl(X)$, then $b \in cl(Xa)$.

If points are closed the structure is called a geometry.

Definition 2 A geometry is homogeneous if for any closed $X \subseteq G$ and $a, b \in G - X$ there is a permutation of G which preserves the closure relation (i.e. an automorphism of the geometry) which fixes X pointwise and takes a to b.

Exercise 3 If G is a homogeneous geometry, X, Y are maximally independent subsets of G, there is an automorphism of G taking X to Y.

- **Definition 4** 1. The structure M is strongly minimal if every first order definable subset of any elementary extension M' of M is finite or cofinite.
 - 2. The theory T is strongly minimal if it is the theory of a strongly minimal structure.
 - 3. $a \in acl(X)$ if there is a first order formula with finitely solutions over X which is satisfied by a.

Definition 5 Let X, Y be subsets of a structure M. An elementary isomorphism from X to Y is 1-1 map from X onto Y such that for every first order formula $\phi(\mathbf{v})$, $M \models \phi(\mathbf{x})$ if and only if $M \models \phi(f\mathbf{x})$.

Exercise 6 Find X, Y subsets of a structure M such that X and Y are isomorphic but not elementarily isomorphic.

Exercise 7 Let X, Y be subsets of a structure M. If f takes X to Y is an elementary isomorphism, f extends to an elementary isomorphism from acl(X) to acl(Y).

Exercise 8 Show a complete theory T is strongly minimal if and only if it has infinite models and

- 1. algebraic closure induces a pregeometry on models of T;
- 2. any bijection between acl-bases for models of T extends to an isomorphism of the models.

Exercise 9 A strongly minimal theory is categorical in any uncountable cardinality.