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Since I have and will use the term:

Definition 1 A structure M is κ-sequence homogeneous if for any a,b ∈ M of length less than κ, if (M, a) ≡
(M,b) then for every c, there exists d such that (M, ac) ≡ (M,bd).

An abstract quasiminimal class is a class of structures that satisfy the following five conditions, which we
expound leisurely.

Assumption 2 (Condition I) Let K be a class of L-structures which admit a monotone idempotent closure
operation cl taking subsets of M ∈ K to substructures of M such that cl has finite character.

Strictly speaking, we should write clM (X) rather than cl(X) but we will omit the M where it is clear from
context.

Definition 3 Let A be a subset of H, H ′ ∈ K. A map from X ⊂ H − A to X ′ ⊂ H ′ − A is called a partial
A-monomorphism if its union with the identity map on A preserves quantifier free formulas.

Freqently, but not necessarily we will have A = G which is in K.

Definition 4 Let Ab ⊂ M and M ∈ K. The (quantifier-free) type of b over A in M , written tpqf (b/A; M) (
tpqf (b/A; M)), is the set of (quantifier-free) first-order formulas with parameters from A true of b in M .

Exercise 5 Why is M a parameter in Definition 4?

Exercise 6 Let Ab ⊂ M , Gb′ ⊂ M ′ with M,M ′ ∈ bK. Show there is a partial A-monomorphism taking a′ to
b′ if and only if tpqf (b/A; M) = tpqf (b′/A;M ′).

The next assumption connects the geometry with the structure on members of K.

Assumption 7 (Condition II) Let G ⊆ H, H ′ ∈ K with G empty or in K.
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1. If f is a bijection between X and X ′ which are separately cl-independent (over G) subsets of H and H ′

then f is a partial G-monomorphism.

2. If f is a partial G-monomorphism from H to H ′ taking X ∪ {y} to X ′ ∪ {y′} then y ∈ cl(XG) iff
y′ ∈ cl(X ′G).

Condition 7.2) has an a priori unlikely strength: quantifier free formulas determine the closure; in practice, the
language is specifically expanded to guarantee this condition. Part 2 of Assumption 7 implies that each M with
G ⊆ M ∈ K is finite sequence homogeneous over G.

Assumption 8 (Condition III : ℵ0-homogeneity over models) If f is a partial G-monomorphism from
H to H ′ with finite domain X then for any y ∈ H there is y′ ∈ H ′ such that f ∪ {〈y, y′〉} extends f to a partial
G-monomorphism.

Question 9 Let a, b be independent over the empty set. Suppose fa, fb map cl(a) (cl(b)) into a K-structure H.
Is fa∪fb a monomorphism? (We prove below that the answer is yes assuming exchange; is exchange necessary?

Definition 10 We say a closure operation satisfies the countable closure condition if the closure of a countable
set is countable.

We easily see:

Lemma 11 Suppose Assumptions I, II, and III are satisfied by cl on an uncountable structure M ∈ K that
satisfies the countable closure condition.

1. For any finite set X ⊂ M , if a, b ∈ M − cl(X), a, b realize the same Lω1,ω type over X.

2. Every Lω1,ω definable subset of M is countable or cocountable. This implies that a ∈ cl(X) iff it satisfies
some φ over X, which has only countably many solutions.

Proof. Condition 1) follows directly from Conditions II and III (Assumption 7 and Assumption 8) by construct-
ing a back and forth. To see condition 2), suppose both φ and ¬φ had uncountably many solutions with φ
defined over X. Then there are a and b satisfying φ and ¬φ respectively and neither is in cl(X); this contradicts
1).

The ω-homogeneity yields by an easy induction:

Lemma 12 Suppose Assumptions I II and III hold. Let G ∈ K be countable and suppose G ⊂ H1,H2 ∈ K.

1. If X ⊂ H −G, X ′ ⊂ H −G are finite and f is a G-partial monomorphism from X to X ′ then f extends
to a G-partial monomorphism from clH(GX) to clH′(GX ′).

2. If X is independent set of cardinality at most ℵ1, and f is a G-partial monomorphism from X to X ′ then
f extends to a G-partial monomorphism from clH(GX) to clH′(GX ′).

Proof. The first statement is immediate from homogeneity. The second follows by induction from the first (by
replacing G by cl(GX0) for X0 a countable initial segment of X). ¤12

For algebraic closure the cardinality restriction on X is unnecessary. We will have to add Assumption 8 to
remove the restriction in excellent classes.
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Lemma 13 Suppose Assumptions I II and III hold. Suppose further that K is defined by a sentence of Lω1,ω

and so is the relation x ∈ cl(y). If there is an H ∈ K which contains an infinite cl-independent set, then there
are members of K of arbitrary cardinality which satisfy the countable chain condition.

Proof. Let X be a countable independent set of H and let H0 = clH(X). Let L∗ be a countable fragment of
Lω1,ω containing the sentence axiomatizing K. Note that H0 ≺ L∗H1 where is H1 is the closure of Xa where a
is independent from X. Continuing, one can construct a continuous L∗-elementary increasing chain of members
of K for any length α. Since the chain is L∗-elementary, each Hα ∈ K. But the closure of any countable set
is contained in the union of a countable subset of this basis which is countable. Thus, each Hα has countable
closures.

Assumption 14 (Condition IV) cl satisfies the exchange axiom: y ∈ cl(Xx)− cl(X) implies x ∈ cl(Xy).

Zilber omits exchange in the fundamental definition but it arises in the natural contexts he considers so we make
it part of quasiminimal excellence. Note however that the examples of first order theories with finite Morley
rank greater than 1 (e.g. [?]) fail exchange.

In the following definition it is essential that ⊂ be understood as proper subset.

Definition 15 1. For any Y , cl−(Y ) =
⋃

X⊂Y cl(X).

2. We call C (the union of) an n-dimensional cl-independent system if C = cl−(Z) and Z is an independent
set of cardinality n.

To visualize a 3-dimensional independent system think of a cube with the empty set at one corner A and each
of the independent elements z0, z1, z2 at the corners connected to A. Then each of cl(zi, zj) for i < j < 3
determines a side of the cube: cl−(Z) is the union of these three sides; cl(Z) is the entire cube.

Assumption 16 (Condition V) Let G ⊆ H,H ′ ∈ K with G empty or in K. Suppose Z ⊂ H − G is an
n-dimensional independent system, C = cl−(Z), and X is a finite subset of cl(Z). Then there is a finite
C0 contained in C such that: for every G-partial monomorphism f mapping X into H ′, for every G-partial
monomorphism f1 mapping C into H ′, if f ∪ (f1 ¹ C0) is a G-partial monomorphism, f ∪ f1 is also a G-partial
monomorphism.

We can rephrase the conclusion as for any a ∈ cl(Z) there is a finite Ca ⊆ C such that tpqf (a/Ca; H) implies
tpqf (a/C;H).

Thus Condition IV, which is the central point of excellence, asserts (for dimension 3) that the type of any
element in the cube over the union of the three given sides is determined by the type over a finite subset of the
sides. The ‘thumbtack lemma’ of Subsection ?? verifies this condition in a specific algebraic context. Here is
less syntactic version of Assumption 8

Definition 17 We say M ∈ K is prime over the set X ⊂ M if every partial monomorphism of X into N ∈ K
extends to a partial monomorphism of M into N .

Remark 18 Note that in first order logic this corresponds to ‘algebraically prime’ rather than ‘elementarily
prime’. In the first order context algebraically prime is a notoriously unstable (in a nontechnical sense) concept.
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Lemma 19 Let G ⊆ H, H ′ ∈ K with G empty or in K and countable. Suppose Z ⊂ H−G is an n-dimensional
independent system, C = cl−(Z), then cl(Z) ⊆ H is prime over C.

Proof. Fix an embedding f from C into H ′ containing G. We must extend f to f̂ mapping cl(Z) into H ′. We
can enumerate cl(X) as ai : i < ω. Let An denote {ai : i < n}. Now define by induction an increasing sequence
of finite sets Bn : n < ω such that tpqf (An/Bn; H) implies tpqf (An/C; H) and

⋃
n<ω Bn = C. Now, using only

part of Lemma 12 1), construct an increasing family of maps fn with the domain of fn = An ∪ Bn. Then the
union of these functions is the required embedding. ¤19

Theorem 20 Let K be a quasiminimal excellent class and suppose H,H ′ ∈ K satisfy the countable closure
condition. Let A,A′ be cl-independent subsets of H, H ′ with cl(A) = H, cl(A′) = H ′, respectively, and ψ a
bijection between A and A′. Then ψ extends to an isomorphism of H and H ′.

Suppose further, that some model of K contains an infinite cl-independent set. Then the class of K-structures
which satisfy the countable closure condition is categorical in every uncountable cardinality.

The remainder of this section is devoted to the proof of Theorem 20

Notation 21 Fix a countable subset W and write A as the disjoint union of A0 and a set A1; without loss of
generality, we can assume ψ is the identity on clH(A0) and work over G = clH(A0). We may write cl∗(X) to
abbreviate cl(A0X).

Lemma 22 Suppose X, Y are subsets of A1. Suppose b ∈ cl(A0X) and c ∈ cl(A0Y ) and p(b, c,g) for some
quantifier-free type q (over g ∈ G). Then there is a map π into cl(A0Y ) whose domain includes bcg, that fixes
cg, and such that p(bπcg) holds.

Proof. Choose finite A∗ ⊂ A0 such that g ∈ cl(A∗), b ∈ cl(A∗X), and c ∈ cl(A∗Y ). Let G0 = cl(A∗Y ). Extend
the identity map on G0 to π1 with domain G0X by mapping X − Y into A0 − (A∗Y ). By Assumption 7 .1,
π1 is a partial G0-monomorphism. By Lemma 12 π1 extends to a partial G0-monomorphism π from cl(A∗XY )
into cl∗(Y ). Clearly π has the required property. ¤22

Lemma 23 Suppose X, Y are subsets of A1 and that ψX and ψY are each partial G-monomorphisms from H
into H ′ with domψX = cl(A0X) and domψY = cl(A0Y ) that agree on cl(A0X)∩ cl(A0Y ). Then ψX ∪ψY is a
partial G-monomorphism.

Proof. By Lemma 12 there is a partial G-monomorphism ψXY which extends ψX and maps cl∗(XY ) into H ′.
Another partial map on cl∗(X)∪ cl∗(Y ) is given by ψX ∪ψY . It suffices to show that for any b ∈ cl∗(X), g ∈ G
and c ∈ cl∗(Y ) and any quantifier free R, H ′ |= R(ψX(b), ψXY (c),g) if and only if H ′ |= R(ψX(b), ψY (c),g).
So we are finished if we apply the following lemma to H ′. To apply the Lemma, note that ψXY ◦ψ−1

Y is a partial
G-monomorphism taking ψY (c) to ψXY (c).

Lemma 24 Let X, Y, Y ′ ⊆ A1. Let b ∈ cl(A0X), c ∈ cl(A0Y ), and c′ ∈ cl(A0Y
′). Suppose f is a partial

G-monomorphism taking c to c′, then f is a partial cl∗(X) monomorphism.

Proof. If not there exists b ∈ cl∗(X) and g ∈ G and a quantifier free R such that R(b, c,g)∧¬R(b, c′,g). Now
apply Lemma 22, to obtain a map π into cl(A0Y Y ′) which fixes c, c′,g and such that R(bπ, c,g)∧¬R(bπ, c′,g).
This contradicts that c, c′ are partially isomorphic over G. ¤24
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We have by straightforward induction.

Corollary 25 Suppose 〈Xi : i < m〉 are subsets of A and that each ψXi
is a partial G-monomorphisms from

H into H ′ with dom ψXi
= cl(A0Xi) and that for any i, j, ψXi

and ψXj
agree whenever both are defined. Then

ψX ∪ ψY is a partial G-monomorphism.

Proof of Theorem 20. Note that H = limX⊂A;|X|<ℵ0 cl(X). We have the obvious directed system on {cl(X) :
X ⊂ A; |X| < ℵ0}. So the theorem follows immediately if for each finite X we can choose ψX : cl(X) → H ′ so
that X ⊂ Y implies ψX ⊂ ψY . We prove this by induction on |X|. Suppose |Y | = n+1 and we have appropriate
ψX for |X| < n + 1. We will prove two statements by induction.

1. ψ−Y : cl−(Y ) → H ′ defined by ψ−Y =
⋃

X⊂Y ψX is a monomorphism.

2. ψ−Y extends to ψY defined on cl(Y ).

The first step is done by induction using Corollary 25 with the X ⊂ Y with |X| = n as the Xi. The exchange
axiom is used to guarantee that the maps ψX agree where more than one is defined. The second step follows
by Lemma 19.

We have shown that the isomorphism type of a structure in K with countable closures is determined by the
cardinality of a basis for the geometry. If M is an uncountable model in K that satisfies the countable closure
condition, the size of M is the same as its dimension so there is at most one model in each uncountable cardinality
which has countable closures. But there is at least one since we can build a model with any dimension κ. (Build
by induction on α < κ structures Mα with cl-basis 〈xγ : γ < α〉. Note that each Mα has countable closures
since the closure of any countable set is contained in a model isomorphic to Mω.) ¤20

Note that a sentence ψ can define a quasiminimal excellent class without being ℵ0-categorical. But we could
extend ψ to ψ′ - the Scott sentence of the model with countably infinite cl-dimension and attain ℵ0-categoricity.

The following corollary seems to rely on the categoricity argument. The key is Condition II (??) and for
countable G it follows from Lemma 12. But in general we use Theorem 20.

Corollary 26 Let K be a quasiminimal excellent class, with G ⊂ H,H ′ all in K. If a ∈ H, a′ ∈ H ′ realize the
same quantifier free type over G (i.e. there is a G-monomorphism taking a to a′) then there is a K-isomorphism
from cl(Ga) onto cl(Ga′).

Thus (G, a, H) and (G, a′,H ′) realize the same Galois type.

Exercise 27 Define a notion of almost quasiminimality analogous to almost strong minimality and prove that
almost quasiminimal classes are categorical in all powers ([?]).

Question 28 Zilber’s proof of Theorem 20 is considerably more complicated. I think this is because he does not
assume exchange. How would you modify the argument here to avoid the use of exchange?
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