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The logic Lω1,ω is obtained by extending the formation rules of first order logic to allow countable conjunctions
and disjunctions. A fragment of Lω1,ω is a set of formulas closed under subformula and the finitary operations.

Definition 1 A sentence ψ in Lω1,ω is called complete if for every sentence φ in Lω1,ω, either ψ |= φ or
ψ |= ¬φ.

In first order logic, the theory of a structure is a well-defined object; here such a theory is not so clearly specified.
An infinite conjunction of first order sentences behaves very much like a single sentence; in particular it satisfies
both the upward and downward Löwenheim Skolem theorems. In contrast, the conjunction of all Lω1,ω true in
an uncountable model may not have a countable model. In its strongest form Morley’s theorem asserts: Let
T be a first order theory having only infinite models. If T is categorical in some uncountable cardinal then
T is complete and categorical in every uncountable cardinal. This strong form does not generalize to Lω1,ω;
take the disjunction of a sentence which is categorical in all cardinalities with one that has models only up
to, say, i2. Since Lω1,ω fails the upwards Löwenheim-Skolem theorem, the categoricity implies completeness
argument that holds for first order sentences fails. However, if the Lω1,ω-sentence ψ is categorical in κ, then,
applying the downwards Löwenheim-Skolem theorem, for every sentence φ either ψ → φ or all models of φ
have cardinality less than κ. So if φ and ψ are κ-categorical sentences with a common model of power κ they
are equivalent. Such a sentence in necessarily ℵ0-categorical (using downward Löwenheim-Skolem). Moreover,
every countable structure is characterized by a complete sentence – its Scott sentence. So if a model satisfies a
complete sentence, it is L∞,ω-equivalent to a countable model.

For purposes of this chapter, one can think of τ = τ ′ in the following. The greater generality will be used a bit
later.

Definition 2 Let τ ⊆ τ ′.

1. A τ ′-structure M is L∗-small for L∗ a countable fragment of Lω1,ω(τ) if M realizes only countably many
L∗-types.

2. A τ ′-structure M is τ -small if realizes only countably many Lω1,ω(τ)-types.

Let M be the only model of power κ of an Lω1,ω-sentence ψ. We want to find sufficient conditions so that there
is a complete sentence ψ′ which implies ψ and is true in M . We will two such conditions: ψ has arbitrarily large
models; ψ has few models of ℵ1. One key tool for this analysis is a different representation of Lω1,ω-sentences.

It is quite easy to see:
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Exercise 3 If ψ is a complete sentence in Lω1,ω in a countable language L then every model M of ψ realizes
only countably many Lω1,ω-types.

In general, an Lω1,ω-type may contain uncountably many formulas. But,

Exercise 4 If the structure M realizes only countably many Lω1,ω-types, then for every tuple a in M there is
a formula φ(x) ∈ Lω1,ω such M |= φ(x) → ψ(x) for each Lω1,ω-formula true of a.

But we will give the short argument for the converse: small models have Scott sentences. A Scott sentence
for a countable model M is a complete sentence satisfied by M ; it characterizes M up to isomorphism among
countable models. The Scott sentence for an uncountable small model is the Scott sentence a countable L∗-
submodel of M , where L∗ is the smallest fragment containing a formula for each type realized in M .

Lemma 5 Let M be a τ structure for some countable τ . If ψ is a sentence in Lω1,ω and M is a model of ψ
that realizes only countably many Lω1,ω-types then there is a complete Lω1,ω-sentence ψ′ so that

1. ψ′ |= ψ;

2. M |= ψ′.

Proof. Let L∗ be the smallest fragment of Lω1,ω containing ψ and the conjunction of each countable type in
Lω1,ω type realized in M . Let N be a countable L∗-elementary submodel of M and let ψ′ be a Scott sentence
for N . Clearly ψ′ is complete. By the choice of L∗, ψ′ is in L∗; so M |= ψ′. ¤5

Confirm: By the choice of L∗, ψ′ is in L∗.

Theorem 6 Let ψ be a sentence in Lω1,ω in a countable language L. Then there is a countable language L′

extending L, a first order L′-theory T , and a collection of L′-types Γ such that reduct is a 1-1 map from the
models of T which omit Γ onto the models of ψ.

Proof. Expand L to L′ by inductively adding a predicate Pφ(x) for each L∗-formula φ. Fix a model of ψ and
expand it to an L′ by interpreting the new predicates so that the new predicates represent each finite Boolean
connective and quantification faithfully: E.g.

P¬φ(x) ↔ ¬Pφ(x),

and
P(∀x)φ(x) ↔ (∀x)Pφ(x),

and that, as far as first order logic can, the Pφ preserve the infinitary operations: for each i,

PV
i φi(x) → Pφi(x).

Let T be the first order theory of any such model and consider the set Γ of types

pV
i φi(x) = {¬PV

i φi(x)} ∪ {Pφi(x) : i < ω}.
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Now if M is a model of T which omits all the types in Γ, M |L |= ψ and each model of ψ has a unique expansion
to a model of T which omits the types in Γ (since this is an expansion by definitions in Lω1,ω). ¤6

Since all the new predicates in the reduction described above are Lω1,ω-definable this is a natural extension
of Morley’s procedure of replacing each first order formula φ by a predicate symbol Pφ, thus guaranteeing
amalgamation over sets for first order categorical T ; the amalgamation does not follow in this case. In general,
finite diagrams do not satisfy the upper Löwenheim-Skolem theorem.

Since there is a 1-1 correspondence between models of ψ and models of T that omit Γ, we can reduce spectrum
considerations for sentences with arbitrarily large models to the study of EC(T, Γ)-classes. In addition, we have
represented the models of ψ as a PCΓ class in the following sense.

Definition 7 A PC(T, Γ) class is the class of reducts to τ ⊂ τ ′ of models of a first order theory τ ′-theory which
omit all types from the specified collection Γ of types in finitely many variables over the empty set.

We write PCΓ to denote such a class without specifying either T or Γ. And we write K is PC(λ, µ) if K can
be presented as PC(T, Γ) with |T | ≤ λ and |Γ| ≤ µ. In the simplest case, we say K is λ-presented if K is
PC(λ, λ).

We have shown every Lω1,ω-sentence in a countable language is ω presented.

Exercise 8 Show that ψ is a sentence in Lλ+,ω in a language of cardinality κ, ψ is µ-presented where µ is the
larger of κ and λ.

Exercise 9 In general a PCΓ class will not be an AEC class of τ structures. Why?

Now, modify the proof of Theorem 6 to show:

Exercise 10 Let ψ be a complete sentence in Lω1,ω in a countable language L. Then there is a countable
language L′ extending L and a first order L′-theory T such that reduct is a 1-1 map from the atomic models
of T onto the models of ψ. So in particular, any complete sentence of Lω1,ω can be replaced (for spectrum
purposes) by considering the atomic models of a first order theory.

To show a categorical sentence with arbitrarily large models extends to a complete sentence we need the method
of Ehrenfeucht-Mostowski models. ‘Morley’s method’ (Section 7.2 of [?]) is a fundamental technique in first order
model theory. It is essential for the foundations of simplicity theory and for the construction of indiscernibles in
infinitary logic. We quote the first order version here; in Lemma ??, we prove the analog for abstract elementary
classes.

Notation 11 1. For any linearly ordered set X ⊆ M where M is a τ ′-structure and τ ′ ⊇ τ , we write Dτ (X)
(diagram) for the set of τ -types of finite sequences (in the given order) from X. We will omit τ if it is
clear from context.

2. Such a diagram of an order indiscernible set, Dτ (X) = Φ, is called ‘proper for linear orders’.

3. If X is a sequence of τ -indiscernibles with diagram Φ = Dτ (X) and any τ model of Φ has built in Skolem
functions, then for any linear ordering I, EM(I, Φ) denotes the τ -hull of a sequence of order indiscernibles
realizing Φ.

4. If τ0 ⊂ τ , the reduct of EM(I, Φ) to τ0 is denoted EMτ0(I, Φ).
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Exercise 12 Suppose τ ‘contains Skolem functions’ and X ⊂ M is sequence of order indiscernibles with diagram
φ. Show that for any linearly ordered set Z, EM(Z, Φ) is a model that is τ -elementarily equivalent to M .

Lemma 13 If (X, <) is a sufficiently long linearly ordered subset of a τ -structure M , for any τ ′ extending
τ (the length needed for X depends on |τ ′|) there is a countable set Y of τ ′-indiscernibles (and hence one of
arbitrary order type) such that Dτ (Y ) ⊆ Dτ (X). This implies that the only (first order) τ -types realized in
EM(X,Dτ ′(Y )) were realized in M .

We need a little background on orderings.

Definition 14 A linear ordering (X, <) is k-transitive if every map between increasing k-tuples extends to an
order automorphism of (X,<).

Exercise 15 Show any 2-transitive linear order is k-transitive for all finite k.

Exercise 16 Show there exist 2-transitive linear orders in every cardinal; hint: take the order type of an ordered
field.

Exercise 17 If dτ (Y ) is the diagram of a sequence of τ -order indiscernibles, show any order isomorphism of
Y extends to an automorphism of the τ -structure EM(Y, Φ).

Definition 18 For any model M and a,B contained in M , the Galois-type of a over B in M is the orbit of
a under the automorphisms of M which fix B.

This notion of Galois type requires an ambient model M . We will speak indiscriminately of the number of
Galois types in M as an upper bound on the number of Galois n-types over any finite n.

Exercise 19 If Y is a 2-transitive linear ordering and then for any τ and Φ is proper for linear orders,
EM(Y, Φ) has |τ | Galois types.

Exercise 20 For any reasonable logic L (i.e. a logic such that truth is preserved under isomorphism) and any
model M the number of Galois types over the empty set in M is at most the number of L-types over the empty
set in M .

Now we can make our first application of the omitting types theorem.

Corollary 21 1. If an Lω1,ω(τ)-sentence ψ has arbitrarily large models then in every infinite cardinality ψ
has a model which realizes only countably many Lω1,ω(τ)-types over the empty set.

2. Thus, if ψ is categorical in some cardinal, ψ is implied by a consistent complete sentence ψ′.

Proof. By Theorem 6, we can extend τ to τ ′ and choose a first order theory T and a countable set of types Γ such
mod(ψ) = PCτ (T, Γ). Since ψ has arbitrarily large models we can apply Theorem 13 to find τ ′′-indiscernibles
for a Skolemization of T in an extended language τ ′′. Now take an Ehrenfeucht-Mostowski τ ′′-model M for the
Skolemization of T over a set of indiscernibles ordered by a 2-transitive dense linear order. Then for every n,
M has only countably many orbits of n-tuples and so realizes only countably many types in any logic where
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truth is preserved by automorphism – in particular in Lω1,ω. So the τ -reduct of M realizes only countably many
Lω1,ω(τ)-types. If ψ is κ-categorical, let ψ′ be the Scott sentence of this Ehrenfeucht-Mostowski model with
cardinality κ. ¤21

The countability of the language is crucial for this result.

For the second case, I(ℵ1, ψ) < 2ℵ1 , we require some further definitions and must quote some hard results. For
our present purposes it would suffice to prove the next theorems for Lω1,ω but for future applications, and since
the proofs need few changes we work with ‘pseudo-elementary’ classes. We will apply Theorem 12 and Theorem
28 from [?].

Theorem 22 (Lopez-Escobar, Morley) Let ψ be an Lω1,ω(τ)-sentence and suppose U,< are a unary and
a binary relation in τ . Suppose that for each α < ω1, there is a model Mα of ψ such that < is linear orders
P (Mα) and α imbeds into (P (Mα), <). Then there is a (countable) model M of ψ such that (P (M), <) contains
a copy of the rationals.

If N is linearly ordered, N is an end extension of M if every element of N comes before every element of N−M .

Theorem 23 Let L∗ be a countable fragment of Lω1,ω. If a countable model M has a proper L∗-elementary
end extension, then it has one with cardinality ℵ1.

Theorem 24 If the τ ′ Lω1,ω-sentence ψ has a model of cardinality ℵ1 which is L∗-small for every countable
τ -fragment L∗ of Lω1,ω, then ψ has a τ -small model of cardinality ℵ1.

Proof. Add to τ ′ a binary relation <, interpreted as a linear order of M with order type ω1. Using that
M realizes only countably many types in any τ -fragment, write Lω1,ω(τ) as a continuous increasing chain of
fragments Lα such that each type in Lα realized in M is a formula in Lα+1. Extend the similarity type to τ ′′

by adding new 2n + 1-ary predicates En(x,y, z) and n + 1-ary functions fn. Let M satisfy En(α, a,b) if and
only if a and b realize the same Lα-type and let fn map Mn+1 into the initial ω elements of the order, so that
En(α, a,b) implies fn(α, a) = fn(α,b). Note:

1. En(β,y, z) refines En(α,y, z) if β > α;

2. En(0,a,b) implies a and b satisfy the same quantifier free τ -formulas;

3. If β > α and En(β, a,b), then for every c1 there exists c2 such that

(a) En+1(α, xa, yb) and

(b) if there are uncountably many c such that En+1(α, ca, c1a) then there are uncountably many c such
that En+1(α, cb, c2b).

4. fn witnesses that for any a ∈ M each equivalence relation En(a,y, z) has only countably many classes.

All these assertions can be expressed by an Lω1,ω(τ ′′) sentence φ. Let L∗ be the smallest τ ′′-fragment containing
φ ∧ ψ. Now add a unary predicate symbol P and a sentence χ which asserts M is an end extension of P (M).
For every α < ω1 there is a model Mα of φ∧ψ ∧χ with order type of (P (M), <) greater than α. (Start with P
as α and alternately take an L∗-elementary submodel and close down under <. After ω steps we have the P for
Mα.) Now by Theorem 22 there is countable structure (N0, P (N0)) such that P (N0) contains a copy of (Q, <)
and N0 is an end extension of P (N0). By Theorem 23, N0 has an L∗ elementary extension N1 of cardinality ℵ1.
Fix an infinite decreasing sequence d0 > d1 > . . . in N1. For each n, define E+

n (x,y) if for some i, En(di,x,y).
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Now using i), ii) and iii) prove by induction on the quantifier rank of φ that N |= E+
n (a,b) implies N |= φ(a)

if and only if N |= φ(b) for every Lω1,ω(τ)-formula φ. For each n, En(d0,x,y) refines E+
n (x,y) and by iv)

En(d0,x,y) has only countably many classes; so N is small. ¤24

Now we show that sentences of Lω1,ω that have few models can be extended to complete sentences. We rely on
the following result of Keisler [Theorem 45 of [?]].

Theorem 25 For any Lω1,ω-sentence ψ and any fragment L∗ containing ψ, if ψ has fewer than 2ℵ1 models of
cardinality ℵ1 then for any M |= ψ of cardinality ℵ1, M realizes only countably many L∗-types over the empty
set.

Theorem 26 If an Lω1,ω-sentence ψ has fewer than 2ℵ1 models of cardinality ℵ1 then there is a complete
Lω1,ω-sentence ψ′ that implies ψ and has a model of cardinality ℵ1.

Proof. By Theorem 25 every model of ψ of cardinality ℵ1 is L∗-small for every countable fragment L∗. By
Theorem 24 ψ has a model of cardinality ℵ1 which is small. By Lemma 5, we finish. ¤26

So to study categoricity of Lω1,ω-sentence ψ, we have established the following reduction. If ψ has arbitrarily
large sentences, without loss of generality, ψ is complete. If ψ has few models of power ℵ1, we can study a
subclass of the models of ψ defined by a complete Lω1,ω-sentence ψ′. We will in fact prove sufficiently strong
results about ψ′ to deduce a nice theorem for ψ. Note that since ψ′ is complete, the models of ψ′ form an
EC(T,Atomic)-class in an extended similarity type τ ′.

Remark 27 To extend this result to Lω1,ω(Q) we need to have Theorems 22 and 23 for Lω1,ω(Q).
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