Lecture 5: Abstract Elementary Classes

John T. Baldwin Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

September 15, 2003

When Jónsson generalized the Fraïsse construction to uncountable cardinalities [?, ?], he did so by describing a collection of axioms, which might be satisfied by a class of models, that guaranteed the existence of a homogeneous-universal model; the substructure relation was an integral part of this description. Morley and Vaught [?] replaced substructure by elementary submodel and developed the notion of saturated model. Shelah [?, ?] generalized this approach in two ways. He moved the amalgamation property from a basic axiom to a constraint to be considered. (But this was a common practice in universal algebra as well.) He made the *substructure* notion a 'free variable' and introduced the notion of an *Abstract Elementary Class*: a class of structures and a 'strong' substructure relation which satisfied variants on Jonsson's axioms. To be precise

Definition 1 A class of L-structures, (K, \leq) , is said to be an abstract elementary class: AEC if both K and the binary relation \leq are closed under isomorphism and satisfy the following conditions.

- A1. If $M \leq N$ then $M \subseteq N$.
- A2. \leq is a partial order on **K**.
- A3. If $\langle A_i : i < \delta \rangle$ is \leq -increasing chain:
 - 1. $\bigcup_{i<\delta} A_i \in \mathbf{K};$
 - 2. for each $j < \delta$, $A_j \leq \bigcup_{i < \delta} A_i$
 - 3. if each $A_i \leq M \in \mathbf{K}$ then $\bigcup_{i \leq \delta} A_i \leq M$.
- A4. If $A, B, C \in \mathbf{K}$, $A \leq C$, $B \leq C$ and $A \subseteq B$ then $A \leq B$.
- A5. There is a Löwenheim-Skolem number $\kappa(\mathbf{K})$ such that if $A \subseteq B \in K$ there is a $A' \in \mathbf{K}$ with $A \subseteq A' \leq B$ and $|A'| < \kappa(\mathbf{K})$.

Property A5 is sometimes called the coherence property and sometimes 'the funny axiom'. Perhaps best is the Tarski-Vaught property since it easily seen to follow in the first order case as an application the Tarski-Vaught test for elementary submodel. However, Shelah sometimes uses 'Tarski-Vaught' for the union axioms.

Exercise 2 Show the class of well-orderings with \leq taken as end extension satisfies the first four properities of an AEC. Does it have a Löwenheim number?

Exercise 3 The models of a sentence of first order logic or any countable fragment of $L_{\omega_{1},\omega}$ with the associated notion of elementary submodel as \leq gives an AEC with Löwenheim number \aleph_{0} .

Definition 4 The logic L(Q) adds to first order logic the expression $(Qx)\phi(x)$ which holds if there are uncountably many solutions of ϕ . The analogous expansion of $L_{\omega_1,\omega}$ is called $L_{\omega_1,\omega}(Q)$.

Exercise 5 The models of a sentence of L(Q) with the associated notion of elementary submodel as \leq does not give an AEC.

It is easy to verify the following statement.

Lemma 6 Let ψ be a sentence in $L_{\omega_1,\omega}(Q)$ and let L^* be the smallest countable fragment of $L_{\omega_1,\omega}(Q)$ containing ψ . Define a class (\mathbf{K}, \leq) by letting \mathbf{K} be the class of models of ψ in the standard interpretation and $M \leq N$ if

1. $M \prec_{L^*} N$ and

2. $M \models (Qx)\theta(x, a)$ iff $\{b \in N : N \models \theta(b, a) \text{ properly contains } \{b \in M : N \models \theta(b, a).$

Exercise 7 What is the Löwenhheim number of the AEC defined in Lemma 6?

Question 8 Is there a way to translate an $L_{\omega_1,\omega}(Q)$ sentence to an AEC with Löwenhheim number \aleph_0 and which has at least approximately the same number of models in each uncountable cardinality?

We approach this question by passing through a more abstract treatment. We call the next result: the presentation theorem. It allows us to replace the entirely semantic description of an abstract elementary class by a syntactic one. I find it extraordinary that the notion of an AEC which is designed to give a version of the Fraisse construction and thus saturated models, also turns out to allow the use of the second great model theoretic technique of the 50's: Ehrenfeucht-Mostowski models.

Theorem 9 If K is an AEC with Lowenheim number \aleph_0 (in a countable vocabulary L), there is a countable language L', a first order L'-theory T' and a set of 2^{\aleph_0} types Γ such that:

 $\boldsymbol{K} = \{ M' \upharpoonright L : M' \models T' \text{ and } M' \text{ omits } \Gamma \}.$

Moreover, if M' is an L'-substructure of N' where M', N' satisfy T' and omit Γ then $M' \upharpoonright L \leq N' \upharpoonright L$.

Proof. Let L' contain *n*-ary function symbols F_i^n for $n < \omega$ and $i < \omega$. We take as T' the theory which asserts only that nonempty models exist. For any $a \in M$, let M'_a denote the L' structure generated by a. Let Γ be the set of quantifier free L'-types of finite tuples a such that $M'_a \upharpoonright L \notin K$ or for some $\mathbf{b} \subset a$, $M'_{\mathbf{b}} \upharpoonright L \nleq M'_a \upharpoonright L$.

We claim T' and Γ suffice. That is, if $\mathbf{K}' = \{M' \upharpoonright L : M' \models T' \text{ and } M' \text{ omits } \Gamma\}$ then $\mathbf{K} = \mathbf{K}'$. If $M' \upharpoonright L \in \mathbf{K}'$, write M' as a direct limit of finitely generated L'-structures $M'_{\mathbf{a}}$. By the choice of Γ , each $M'_{\mathbf{a}} \upharpoonright L \in \mathbf{K}$ and if $\mathbf{a} \subseteq \mathbf{a}', M'_{\mathbf{a}} \upharpoonright L \leq M'_{\mathbf{a}'} \upharpoonright L$, and so by the unions of chains axioms $M' \upharpoonright L \in \mathbf{K}$. Conversely, if $M \in \mathbf{K}$, write Mas a \leq -direct limit of countable L-structures. Expand each countable \leq -substructure of M to an L'-structure by letting $\{F_i^n(\mathbf{a}) : i < \omega\}$ enumerate the universe of M. By proceeding inductively, we can guarantee that these expansions cohere and verify that $M \in \mathbf{K}'$.

The moreover holds for countable structures directly by the choice of Γ and extends to arbitrary structures by the union of chain axioms on an AEC. In more detail, we have M' a direct limit of M_a and N' is a \leq -direct limit of N_a where $M_a = N_a$ for $a \in M$. Each $M_a \upharpoonright L \leq N$ so the direct limit M is a strong submodel of N. \Box_9

We have shown that an arbitrary countable AEC \mathbf{K} is a $PC(\aleph_0, 2^{\aleph_0})$ class. We will show that under further conditions on \mathbf{K} , we can get an ω -presentation.

Exercise 10 Show that if \mathbf{K} is an AEC in a similarity type of cardinality λ , \mathbf{K} can be presented as a $PC(\lambda, 2^{\lambda})$ -class.

Remark 11 1. There is no use of amalgamation in this theorem.

- 2. The only penalty for increasing the size of the language or the Löwenheim number is that the size of L'and the number of types omitted; thus θ must be chosen larger.
- 3. We can (and Shelah does) observe that the class of pairs (M, N) with $M \leq N$ forms a $PC(\aleph_0, 2^{\aleph_0})$ but it seems that the moreover clause of Theorem 9 is a more useful version. See Theorem ?? and its applications. This clause appears in Grossberg's account: [?] and in Makowsky's [?].

We will see many problems can be reduced classes of structures of the following sort.

- **Definition 12** 1. A finite diagram or $EC(T, \Gamma)$ class is the class of models of first order theory which omit all types from a specified collection Γ of types in finitely many variables over the empty set.
 - 2. EC(T, Atomic) denotes the class of atomic models of T.

The last definition abuses the $EC(T, \Gamma)$ notation, since for consistency, we really should write nonatomic. But atomic is shorter and emphasizes that we are restricting to the atomic models of T.

Exercise 13 The models of an $EC(T, \Gamma)$ with the ordinary first order notion of elementary submodel as \leq gives an AEC with Löwenheim number \aleph_0 .

Definition 14 A λ -abstract class \mathbf{K}_{λ} is a collection of τ -structures of cardinality λ and a binary relation \leq_{λ} refining substructure on these structures such that both \mathbf{K}_{λ} and \leq_{λ} are closed under isomorphism and the properties of an AEC hold with one modification. The union of chains axioms is revised to apply to chains of length $\delta < \lambda$.

Exercise 15 If If (\mathbf{K}, \leq) is an abstract elementary class then the restriction of \mathbf{K} and \leq) to models of cardinality λ gives a λ -abstract elementary class.

Exercise 16 If K_{λ} is an abstract elementary class show (K, \leq) is an AEC with Löwenheim number λ if K and \leq are all direct limits of K_{λ} and \leq_{λ} respectively.

Exercise 17 Show that if the AEC's K_1 and K_2 have Lówenheim number λ and the same restriction to models of size λ they are identical above λ .