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When Jónsson generalized the Fräisse construction to uncountable cardinalities [?, ?], he did so by describ-
ing a collection of axioms, which might be satisfied by a class of models, that guaranteed the existence of a
homogeneous-universal model; the substructure relation was an integral part of this description. Morley and
Vaught [?] replaced substructure by elementary submodel and developed the notion of saturated model. Shelah
[?, ?] generalized this approach in two ways. He moved the amalgamation property from a basic axiom to
a constraint to be considered. (But this was a common practice in universal algebra as well.) He made the
substructure notion a ‘free variable’ and introduced the notion of an Abstract Elementary Class: a class of
structures and a ‘strong’ substructure relation which satisfied variants on Jonsson’s axioms. To be precise

Definition 1 A class of L-structures, (K,≤), is said to be an abstract elementary class: AEC if both K and
the binary relation ≤ are closed under isomorphism and satisfy the following conditions.

• A1. If M ≤ N then M ⊆ N .

• A2. ≤ is a partial order on K.

• A3. If 〈Ai : i < δ〉 is ≤-increasing chain:

1.
⋃

i<δ Ai ∈ K;
2. for each j < δ, Aj ≤

⋃
i<δ Ai

3. if each Ai ≤ M ∈ K then
⋃

i<δ Ai ≤ M .

• A4. If A,B, C ∈ K, A ≤ C, B ≤ C and A ⊆ B then A ≤ B.

• A5. There is a Löwenheim-Skolem number κ(K) such that if A ⊆ B ∈ K there is a A′ ∈ K with
A ⊆ A′ ≤ B and |A′| < κ(K).

Property A5 is sometimes called the coherence property and sometimes ‘the funny axiom’. Perhaps best is the
Tarski-Vaught property since it easily seen to follow in the first order case as an application the Tarski-Vaught
test for elementary submodel. However, Shelah sometimes uses ‘Tarski-Vaught’ for the union axioms.

Exercise 2 Show the class of well-orderings with ≤ taken as end extension satisfies the first four properities of
an AEC. Does it have a Löwenheim number?

Exercise 3 The models of a sentence of first order logic or any countable fragment of Lω1,ω with the associated
notion of elementary submodel as ≤ gives an AEC with Löwenheim number ℵ0.
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Definition 4 The logic L(Q) adds to first order logic the expression (Qx)φ(x) which holds if there are uncount-
ably many solutions of φ. The analogous expansion of Lω1,ω is called Lω1,ω(Q).

Exercise 5 The models of a sentence of L(Q) with the associated notion of elementary submodel as ≤ does not
give an AEC.

It is easy to verify the following statement.

Lemma 6 Let ψ be a sentence in Lω1,ω(Q) and let L∗ be the smallest countable fragment of Lω1,ω(Q) containing
ψ. Define a class (K,≤) by letting K be the class of models of ψ in the standard interpretation and M ≤ N if

1. M ≺L∗ N and

2. M |= (Qx)θ(x, a) iff {b ∈ N : N |= θ(b,a) properly contains {b ∈ M : N |= θ(b,a).

Exercise 7 What is the Löwenhheim number of the AEC defined in Lemma 6 ?

Question 8 Is there a way to translate an Lω1,ω(Q)sentence to an AEC with Löwenhheim number ℵ0 and
which has at least approximately the same number of models in each uncountable cardinality?

We approach this question by passing through a more abstract treatment. We call the next result: the pre-
sentation theorem. It allows us to replace the entirely semantic description of an abstract elementary class
by a syntactic one. I find it extraordinary that the notion of an AEC which is designed to give a version of
the Fräisse construction and thus saturated models, also turns out to allow the use of the second great model
theoretic technique of the 50’s: Ehrenfeucht-Mostowski models.

Theorem 9 If K is an AEC with Lowenheim number ℵ0 (in a countable vocabulary L), there is a countable
language L′, a first order L′-theory T ′ and a set of 2ℵ0 types Γ such that:

K = {M ′ ¹ L : M ′ |= T ′ and M ′ omits Γ}.

Moreover, if M ′ is an L′-substructure of N ′ where M ′, N ′ satisfy T ′ and omit Γ then M ′ ¹ L ≤ N ′ ¹ L.

Proof. Let L′ contain n-ary function symbols Fn
i for n < ω and i < ω. We take as T ′ the theory which asserts

only that nonempty models exist. For any a ∈ M , let M ′
a denote the L′ structure generated by a. Let Γ be the

set of quantifier free L′-types of finite tuples a such that M ′
a ¹ L 6∈ K or for some b ⊂ a, M ′

b ¹ L 6≤ M ′
a ¹ L.

We claim T ′ and Γ suffice. That is, if K ′ = {M ′ ¹ L : M ′ |= T ′ and M ′ omits Γ} then K = K′. If M ′ ¹ L ∈ K′,
write M ′ as a direct limit of finitely generated L′-structures M ′

a. By the choice of Γ, each M ′
a ¹ L ∈ K and if

a ⊆ a′, M ′
a ¹ L ≤ M ′

a′ ¹ L, and so by the unions of chains axioms M ′ ¹ L ∈ K. Conversely, if M ∈ K, write M
as a ≤-direct limit of countable L-structures. Expand each countable ≤-substructure of M to an L′-structure
by letting {Fn

i (a) : i < ω} enumerate the universe of M . By proceeding inductively, we can guarantee that
these expansions cohere and verify that M ∈ K ′.

The moreover holds for countable structures directly by the choice of Γ and extends to arbitrary structures by
the union of chain axioms on an AEC. In more detail, we have M ′ a direct limit of Ma and N ′ is a ≤-direct
limit of Na where Ma = Na for a ∈ M . Each Ma ¹ L ≤ N so the direct limit M is a strong submodel of N .
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We have shown that an arbitrary countable AEC K is a PC(ℵ0, 2ℵ0) class. We will show that under further
conditions on K, we can get an ω-presentation.

Exercise 10 Show that if K is an AEC in a similarity type of cardinality λ, K can be presented as a PC(λ, 2λ)-
class.

Remark 11 1. There is no use of amalgamation in this theorem.

2. The only penalty for increasing the size of the language or the Löwenheim number is that the size of L′

and the nunber of types omitted; thus θ must be chosen larger.

3. We can (and Shelah does) observe that the class of pairs (M,N) with M ≤ N forms a PC(ℵ0, 2ℵ0)
but it seems that the moreover clause of Theorem 9 is a more useful version. See Theorem ?? and its
applications. This clause appears in Grossberg’s account: [?] and in Makowsky’s [?].

We will see many problems can be reduced classes of structures of the following sort.

Definition 12 1. A finite diagram or EC(T, Γ) class is the class of models of first order theory which omit
all types from a specified collection Γ of types in finitely many variables over the empty set.

2. EC(T,Atomic) denotes the class of atomic models of T .

The last definition abuses the EC(T, Γ) notation, since for consistency, we really should write nonatomic. But
atomic is shorter and emphasizes that we are restricting to the atomic models of T .

Exercise 13 The models of an EC(T, Γ) with the ordinary first order notion of elementary submodel as ≤ gives
an AEC with Löwenheim number ℵ0.

Definition 14 A λ-abstract class Kλ is a collection of τ -structures of cardinality λ and a binary relation ≤λ

refining substructure on these structures such that both Kλ and ≤λ are closed under isomorphism and the
properties of an AEC hold with one modification. The union of chains axioms is revised to apply to chains of
length δ < λ.

Exercise 15 If If (K,≤) is an abstract elementary class then the restriction of K and ≤) to models of cardi-
nality λ gives a λ-abstract elementary class.

Exercise 16 If Kλ is an abstract elementary class show (K,≤) is an AEC with Löwenheim number λ if K
and ≤ are all direct limits of Kλ and ≤λ respectively.

Exercise 17 Show that if the AEC’s K1 and K2 have Lówenheim number λ and the same restriction to models
of size λ they are identical above λ.
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