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We work in this section under the following strong assumption.

Assumption 1 1. K has arbitrarily large models.

2. K satisfies the amalgamation property and the joint embedding property.

3. The Lowenheim-number of K, LS(K), is ℵ0.

We say K has the amalgamation property if M ≤ N1 and M ≤ N2 ∈ K with all three in K implies there is a
common strong extension N3 completing the diagram. Joint embedding means any two members of K have a
common strong extension. Crucially, we amalgamate only over members of K; this distinguishes this context
from the context of homogeneous structures.

In this section we take advantage of joint embedding and amalgamation to find a monster model. We then
define types in terms of orbits of stabilizers of submodels. This allows an identification of ‘model-homogeneous’
with ‘saturated’. That is, we give an abstract account of Morley-Vaught [?].

Definition 2 M is µ-model homogenous if for every N ≺K M and every N ′ ∈ K with |N ′| < µ and N ≺K N ′

there is a K-embedding of N ′ into M over N .

To emphasize, this differs from the homogeneous context because the N must be in K. It is easy to show:

Lemma 3 If M1 and M2 are µ-model homogeneous of cardinality µ > LS(K) then M1 ≈ M2.

Proof. If M1 and M2 have a common submodel N of cardinality < µ, this is an easy back and forth. Now
suppose N1, (N2) is a small model of M1, (M2) respectively. By the joint embedding property there is a small
common extension N of N1, N2 and by model homogeneity N is embedded in both M1 and M2. ¤3

Note that in the absence of joint embedding to get uniqueness, we would (as in [?]) have to add to the definition
of ‘M is model homogeneous’ that all models of cardinality < µ are embedded in M .

Exercise 4 Suppose M is µ-model homogeneous with cardinality µ, N0, N1, N2 ∈ K with N0 ≺ N1, N2 ≺ M ,
and f is isomorphism between N1 and N2 over N0. Then f extends to an automorphism of M .
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Theorem 5 If µ∗<µ∗ = µ∗ and µ∗ ≥ 2LS(K) then there is a model M of cardinality µ∗ which is model
homogeneous.

We call the model constructed in Theorem 5, the monster model. From now on all, structures considered are
substructures ofM with cardinality < µ∗. The standard arguments for the use of a monster model in first order
model theory ([?, ?] apply here.

Definition 6 Let M ∈ K, M ≺K M and a ∈M. The Galois type of a over M (∈M) is the orbit of a under
the automorphisms of M which fix M .

We freely use the phrase, ‘Galois type of a over M ’, dropping the (∈ M) since M is fixed. Note that a priori
this notion depends on the embedding of Ma into an N ∈ K and the embedding of N into M. Since we have
assumed amalgamation, our usage is justified as long as the base is an M ∈ K. In more general situations,
the Galois type is an equivalence class of an equivalence relation on triples (M, a,N). This is an equivalence
relation on the class of M that are amalgamations for extensions in the same cardinality. (See [?, ?].) Since we
have amalgamation and have fixed M, we don’t need the extra notation. The following definition and exercise
show the connection of the situation as described here with the more complicated description elsewhere. They
are needed only to link with the literature.

Definition 7 For M ≺K N1 ∈ K, M ≺K N2 ∈ K and a ∈ N1−M , b ∈ N2−M , write (M,a, N1) ∼ (M, b, N2)
if there exist strong embeddings f1, f2 of N1, N2 into some N∗ which agree on M and with f1(a) = f2(b).

Exercise 8 If K has amalgamation, ∼ is an equivalence relation.

Exercise 9 Suppose K has amalgamation and joint embedding. Show (M,a, N1) ∼ (M, b,N2) if and only if
there are embeddings g1 and g2 of N1, N2 into M that agree on M and such that g1(a) and g2(b) have the same
Galois type over g1(M).

Definition 10 The set of Galois types over M is denoted ga− S(M).

We say a Galois type p over M is realized in N with M ≺K N ≺K M if p ∩N 6= ∅.

Definition 11 The model M is µ-Galois saturated if for every N ≺K M with |N | < µ and every Galois type
p over N , p is realized in M .

Again, a priori this notion depend on the embedding of M into M; but with amalgamation it is well-defined.

The following model-homogeneity=saturativity theorem was announced with an incomplete proof in [?]. Full
proofs are given in Theorem 6.7 of [?] and .26 of [?]. However, we give a simpler argument.

Theorem 12 For λ > LS(K), The model M is λ-Galois saturated if and only if it is λ-model homogeneous.

Proof. It is obvious that λ-model homogeneous implies λ-Galois saturated. It is easy to prove the converse by
induction on cardinality if one has the successor stage. So we assume |M | = µ+, and M ≺K M is µ+-saturated.
We want to show M is µ+-model homogeneous. So fix M0 ≺K M and N with |N | = µ and M ≺K N ≺K M.
We must construct an embedding of N into M . Enumerate N − M as 〈ai : i < µ〉. We will define fi for
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i < µ an increasing continuous sequence of maps with domain Ni and range Mi so that M0 ≺K Ni ≺K M,
M0 ≺K Mi ≺K M and ai ∈ Ni+1. The restriction of

⋃
i<µ fi to N is required embedding. Let N0 = M0

and f0 the identity. Suppose fi has been defined. Choose the least j such that aj ∈ N − Ni. By the model
homogeneity of M, fi extends to an automorphism f̂i of M. Using the saturation, let bj ∈ M realize the Galois
type of f̂i(aj) over Mi. So there is an α ∈ autM which fixes Mi and takes bj to f̂i(aj). Choose Mi+1 ≺K M

with cardinality µ and containing Mibj . Now f̂−1
i ◦ α maps Mi to Ni and bj to aj . Let Ni+1 = f̂−1

i ◦ α(Mi+1)
and define fi+1 as the restriction of α−1 ◦ f̂i to Ni+1. Then fi+1 is as required. ¤12

In the remainder of this section we discuss some important ways in which Galois types behave differently from
‘syntactic types’.

Note that if M ≺K N ≺K M, then p ∈ ga− S(N) extends p′ ∈ ga − S(N) if for some (any) a realizing p and
some (any) b realizing p′ there is an automorphism α fixing M and taking a to b.

Lemma 13 If M =
⋃

i<ω Mi in an increasing chain of members of K and {pi : i < ω} satisfies pi+1 ¹ Mi = pi,
there is a pω ∈ ga− S(M) with pω ¹ Mi = pi for each i.

Proof. Let ai realize pi. By hypothesis, for each i < ω, there exists fi which fixes Mi−1 and maps ai to ai−1.
Let gi be the composition f0 ◦ f1 ◦ . . . fi. Then gi maps ai to a0, fixes M0 and gi ¹ Mi−1 = gi−1 ¹ Mi−1. Let
M ′

i denote gi(Mi) and M ′ their union. Then
⋃

i<ω gi is an isomorphism between M and M ′. So by model-
homogeneity there exists an automorphism h of M with h ¹ Mi = gi ¹ Mi for each i. Now g−1

i ◦ h fixes Mi and
maps aω to ai for each i. This completes the proof. ¤13

Now suppose we wanted to prove Lemma 13 for chains of length δ > ω. The difficulty can be seen at stage ω.
In addition to the assumptions of Lemma 13, we are given {ai : i ≤ ω} and fω,i which fixes Mi and maps aω

to ai. We can construct gi as in the original proof. The difficulty is to find gω which extends all the gi and
maps aω to a0. In the argument for Lemma 13, we found a map h and an element (which we will now call a′ω
such that h takes a′ω to a0 while h extends all the gi. We would be done if aω and a′ω realized the same galois
type over M = Mω. In fact, aω and a′ω realized the same galois type over each Mi. So the following locality
condition (for chains of length ω) would suffice for this special case. Moreover, by a further induction locality
would give Lemma 13 for chains of arbitrary length. Unfortunately, locality probably does not hold for all AEC
with amalgamation.

Definition 14 K has local galois types if for every M =
⋃

i<κ Mi in a continuous increasing chain of members
of K and for any p, q ∈ ga− S(M): if p ¹ Mi = q ¹ Mi for every i then p = q.

We have sketched the proof of:

Lemma 15 Suppose K has local Galois types. If M =
⋃

i<κ Mi in an increasing chain of members of K and
{pi : i < κ} satisfies pi+1 ¹ Mi = pi, there is a pκ ∈ ga− S(M) with pκ ¹ Mi = pi for each i.

Locality provides a key distinction between the general AEC case and homogenous structures. In homogeneous
structures, types are syntactic objects and locality is trivial. Thus, as pointed out by Shelah, Hyttinen, and
Buechler-Lessmann, Lemma 15 applies in the homogeneous context.
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