Lecture 7: Galois stability

John T. Baldwin Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

September 22, 2003

In this section we show that a countable λ -categorical AEC is μ -stable for μ above the Löwenheim number and below λ . The key idea is that for a linear order I and model $EM(I, \Phi)$ automorphisms of I induce automorphisms of $EM(I, \Phi)$. And, automorphisms of $EM(I, \Phi)$ preserve types in any reasonable logic; in particular, automorphisms of $EM(I, \Phi)$ preserve Galois types. Note that a model N is (defined to be) stable if few types are realized in N. So if N is a brimful model (Definition 2) then the model N is σ -stable for every $\sigma < |N|$.

Since we deal with reducts, we will consider several structures with the same universe; it is crucial to keep the vocabulary of the structure in mind. The AEC under consideration has vocabulary τ ; it is presented as reducts of models of theory T' (which omit certain types) in a vocabulary τ' . In addition, we have the class of linear orderings (*LO*) in the background.

We really have three AEC's: (LO, \subset) , \mathbf{K}' which is Mod(T') with submodel as τ' -closed subset, and $(\mathbf{K}, \prec_{\mathbf{K}})$. We are describing the properties of the EM-functor between (LO, \subset) and \mathbf{K}' or \mathbf{K} . \mathbf{K}' is only a tool that we are singling out to see the steps in the argument. The following definitions hold for any of the three classes and I write \leq for the notion of substructure. In this section of the paper I am careful to use \leq when discussing all three cases versus $\prec_{\mathbf{K}}$ for the AEC.

Definition 1 M_2 is σ -universal over M_1 in N if for every $M_1 \leq M_2 \leq N$ and whenever $M_1 \leq M'_2 \leq N$, with $|M_1| \leq |M'_2| \leq \sigma$, there is a (partial isomorphism) fixing M_1 and taking M'_2 into M_2 .

I introduce one term for shorthand. It is related to Shelah's notion of *brimmed* in [?].

Definition 2 N is brimful if for every $\sigma < |N|$, and every $M_1 \leq N$ with $|M_1| = \sigma$, there is an M_2 that is σ -universal over M_1 in N.

The next notion just makes it easier to write the proof of the following Lemma.

Notation 3 Let $I \subset J$ be linear orders. We say a and b in J realize the same cut over I and write $a \sim_I b$ if for every $j \in J$, a < j if and only if b < j.

Claim 4 (Lemma 3.7 of [?]) The linear order $I = \lambda^{<\omega}$ is brimful.

Proof. Let $J \subset I$ have cardinality $\theta < \lambda$. Since we can increase J without harm, we can assume $J = A^{<\omega}$ for some $A \subset \lambda$. Note that $\sigma \sim_J \tau$ if and only if for the least n such that $\sigma \upharpoonright n = \tau \upharpoonright n \in J$, $\sigma(n) \sim_A \tau(n)$. Thus

there are only θ cuts over J realized in I. For each cut C_{α} , $\alpha < \theta$, we choose a representative $\sigma_{\alpha} \in I - J$ of length n such that $\sigma_{\alpha} \upharpoonright n - 1 \in J$, so a cut has the form $\{\sigma_{\alpha} \uparrow \tau : \tau \in \lambda^{<\omega}, \alpha < \theta\}$. We can assume any J^* extending J has the form $J^* = B^{<\omega}$ for some $B \subset \lambda$, say with $\operatorname{otp}(B) = \gamma$. Thus, the intersection of J^* with a cut in J is isomorphic to a subset of $\gamma^{<\omega}$. We finish by noting for any ordinal $|\gamma| = \theta$, $\gamma^{<\omega}$ can be embedded in $\theta^{<\omega}$. Thus, the required θ -universal set over J is $J \cup \{\sigma_{\alpha} \uparrow \tau : \tau \in \theta^{<\omega}, \alpha < \theta\}$.

Qing Zhang has provided the following elegant argument for the last claim. First show by induction on γ there is a map g embedding γ in $\theta^{<\omega}$. (E.g. if $\gamma = \lim_{i < \theta} \gamma_i$, and g_i maps γ_i into $\theta^{<\omega}$, let for $\beta < \gamma$, $g(\beta) = i \hat{g}_i(\beta)$ where $\gamma_i \leq \beta < \gamma_{i+}$.) Then let h map $\gamma^{<\omega}$ into $\theta^{<\omega}$ by, for $\sigma \in \gamma^{<\omega}$ of length n, setting $h(\sigma) = \langle g(\sigma(0)), \ldots, g(\sigma(n-1)) \rangle$. \Box_4

The argument for Claim 4 yields:

Corollary 5 Suppose $\mu < \lambda$ are cardinals. Then for any $X \subset \mu^{<\omega}$ and any Y with $X \subseteq Y \subset \lambda^{<\omega}$ and $|X| = |Y| < \mu$, there is an order embedding of Y into $\mu^{<\omega}$ over X.

Exercise: For an ordinal γ , let $\gamma^{\omega*}$ denote the functions from ω to γ with only finitely many non-zero values. Show $\gamma^{\omega*}$ is a dense linear order and so is not isomorphic to $\gamma^{<\omega}$. Vary the proof above to show $\gamma^{\omega*}$ is brimful.

Since every L'-substructure of $EM(I, \Phi)$ has the form $EM(I_0, \Phi)$ for some subset I_0 of I, we have immediately:

Claim 6 If I is brimful as a linear order, $EM(I, \Phi)$ is brimful as an L'-structure.

Recall, Morley's omitting types theorem.

Lemma 7 If (X, <) is a sufficiently long linearly ordered subset of a τ -structure M, for any τ' extending τ (the length needed for X depends on $|\tau'|$) there is a countable set Y of τ' -indiscernibles (and hence one of arbitrary order type) such that $\mathbf{D}_{\tau}(Y) \subseteq \mathbf{D}_{\tau}(X)$. This implies that the only (first order) τ -types realized in $EM(X, \mathbf{D}_{\tau'}(Y))$ were realized in M.

Using this result, we can find Skolem models over indiscernibles in an AEC.

Theorem 8 If K is an abstract elementary class in the vocabulary τ , which is represented as a $PC\Gamma$ class witnessed by τ', T', Γ that has arbitrarily large models, there is a τ' -diagram Φ such that for every linear order (I, <) there is a τ' -structure $M = EM(I, \Phi)$ such that:

- 1. $M \models T'$.
- 2. The τ' -structure $M = EM(I, \Phi)$ is the Skolem hull of I.
- 3. I is a set of τ' -indiscernibles in M.
- 4. $M \upharpoonright \tau$ is in **K**.
- 5. If $I' \subset I$ then $EM_{\tau}(I', \Phi) \prec_{\mathbf{K}} EM_{\tau}(I, \Phi)$.

Proof. The first four clauses are a direct application of Lemma 7, Morley's theorem on omitting types. See also problem 7.2.5 of Chang-Keisler [?]. It is automatic that $EM(I', \Phi)$ is an L' substructure of $EM(I, \Phi)$. The moreover clause allows us to extend this to $EM_{\tau}(I', \Phi) \prec_{\mathbf{K}} EM_{\tau}(I, \Phi)$. \square_8

Now using amalgamation and categoricity, we move to the AEC K. There are some subtle uses here of the 'coherence axiom': $M \subseteq N \prec_{K} N_1$ and $M \prec_{K} N_1$ implies $M \prec_{K} N$.

Proof. Let $M = EM(I, \Phi)$; we must show $M \upharpoonright \tau$ is brimful as a member of K. Suppose $M_1 \prec_K M \upharpoonright \tau$ with $|M_1| = \sigma < |M|$. Then there is $N_1 = EM(I', \Phi)$ with $|I'| = \sigma$ and $M_1 \subseteq N_1 \leq M$. By Lemma 8.5, $N_1 \upharpoonright \tau \prec_K M \upharpoonright \tau$. So $M_1 \prec_K N_1 \upharpoonright \tau$ by the coherence axiom. Let M_2 have cardinality σ and $M_1 \prec_K M_2 \prec_K M \upharpoonright \tau$. Choose a τ' -substructure N_2 of M with cardinality σ containing N_1 and M_2 . Now, N_2 can be embedded by a map f into the σ -universal τ' -structure N_3 containing N_1 which is guaranteed by Claim 6. But $f(N_2) \upharpoonright \tau \prec_K N_3 \upharpoonright \tau$ by the coherence axiom so $N_3 \upharpoonright \tau$ is the required K-universal extension of M_1 . \Box_9

- **Definition 10** 1. Let $N \subset \mathbb{M}$. N is λ -Galois-stable if for every $M \subset N$ with cardinality λ , only λ Galois types over M are realized in N.
 - 2. **K** is λ -Galois-stable if \mathbb{M} is. That is $\operatorname{aut}_{M}(\mathbb{M})$ has only λ orbits for every $M \subset \mathbb{M}$ with cardinality λ .

Since we are usually working in an AEC, we will frequently abuse notation and write stable rather than Galoisstable.

Since each Galois type over M_0 realized in M is represented by an M_1 with $M_0 \prec_{\mathbf{K}} M_1 \prec_{\mathbf{K}} M$, $M = EM(I, \phi)$ brimful, and $|M_1| = |M_0|$, Claim 9 implies immediately:

Claim 11 If K is λ -categorical, the model M with $|M| = \lambda$ is σ -Galois stable for every $\sigma < \lambda$.

Theorem 12 If K is categorical in λ , then K is σ -Galois-stable for every $\sigma < \lambda$.

Proof. Suppose K is not σ -stable for some $\sigma < \lambda$. Then by Löwenheim-Skolem, there is a model N of cardinality σ^+ which is not σ -stable. Let M be the σ -stable model with cardinality λ constructed in Claim 11. Categoricity and joint embedding imply N can be embedded in M. The resulting contradiction proves the result. \Box_{12}

Remark 13 Again, the assumption that K has amalgamation isn't needed here; instead of using Löwenheim-Skolem from the monster, one can use amalgamation on $K_{<\lambda}$ and get joint embedding by restricting to the equivalence class of the categoricity model.

Corollary 14 Suppose K is categorical in λ and λ is regular. The model of power λ is saturated and so model homogeneous.

Proof. Choose in $M_i \prec_{\mathbf{K}} \mathbb{M}$ using $< \lambda$ -stability and Löwenheim-Skolem, for $i < \lambda$ so that each M_i has cardinality $< \lambda$ and M_{i+1} realizes all types over M_i . By regularity, it is easy to check that M_{λ} is saturated. \Box_{14}

The same argument gives saturated models in smaller regular cardinals; more strongly we can demand that the saturated model be an Ehrenfreuht-Mostowski model.

Corollary 15 Suppose \mathbf{K} is an AEC with vocabulary τ that is categorical in λ and λ is regular. Then for every regular μ , $\mathrm{LS}(\mathbf{K}) < \mu < \lambda$ there is a model $M_{\mu} = EM_{\tau}(I_{\mu}, \Phi)$ which is saturated. In particular, it is μ -model homogeneous.

Proof. For any ordered set J of cardinality λ , let $N = EM_{\tau}(J, \phi)$ be the model of cardinality λ . We construct an alternating chain of K-submodels of length μ . $M_0 \prec_K M$ is arbitrary with cardinality μ . $M_{2\alpha+1}$ has cardinality

 μ and realizes all types over $M_{2\alpha}$ (possible by Corollary 14). $M_{2\alpha+2}$ has cardinality μ , $M_{2\alpha+1} \prec_{\mathbf{K}} M_{2\alpha+2}$ and $M_{2\alpha+2}$ is $EM_{\tau}(I_{\alpha+1}, \Phi)$ where $I_{\alpha} \subset I_{\alpha+1} \subset J$ and all I_{α} have cardinality μ . Then $EM_{\tau}(I_{\mu}, \Phi) = \bigcup_{\alpha < \mu} EM_{\tau}(I_{\alpha}, \Phi)$ is saturated by regularity. \Box_{15}

Now using stability we can get a still stronger result, eliminating the hypothesis that μ is regular. We show the proofs of both Corollary 15 and Corollary 16 since in the first case we constructed a saturated model directly and in the second a model homogeneous structure.

Corollary 16 Suppose K is categorical in λ and λ is regular. Then for every μ , $LS(K) < \mu < \lambda$ there is a model $M_{\mu} = EM(\mu^{<\omega}, \Phi)$ which is μ -model homogeneous.

Proof. Represent the categoricity model as $M^* = EM_{\tau}(\lambda^{<\omega}, \Phi)$. We show $M_{\mu} = EM_{\tau}(\mu^{<\omega}, \Phi)$ is model homogenous. Suppose $M_1 \prec_{\mathbf{K}} M \upharpoonright \tau$ with $|M_1| = \sigma < |M|$. Then there is $N_1 = EM_{\tau}(1, \Phi)$ with $|I_1| = \sigma$, $M_1 \subset N_1$ and $I_1 \subset \mu^{<\omega}$. Let M_2 have cardinality σ and $M_1 \prec_{\mathbf{K}} M_2$. By amalgamation, choose $N_2 \in \mathbf{K}$ which is an amalgam of N_1 and M_2 over M_1 . By the λ -model homogeneity of M^* , there is an embedding of N_2 into M^* over N_1 say with image N'_2 . Then $M'_2 \subset EM(J, \Phi)$ for some J with $I_1 \subset J \subset (\lambda^{<\omega} \text{ and } |J| = \sigma$. Now by Corollary 5 and an argument like that in Claim 9, there is an embedding of $EM_{\tau}(J, \Phi)$ into $M = EM_{\tau}(\mu^{<\omega}, \Phi)$ over N_1 , and a fortiori over M_1 and we finish. \Box_{16}

Exercise 17 Show Corollary 16 can be marginally strengthened by dropping the hypothesis that λ is regular but requiring that μ be less than the cofinality of λ .