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In this section we show that a countable A-categorical AEC is u-stable for u above the Lowenheim number
and below A. The key idea is that for a linear order I and model EM (I, ®) automorphisms of I induce
automorphisms of EM (I, ®). And, automorphisms of EM (I, ®) preserve types in any reasonable logic; in
particular, automorphisms of EM (I, ®) preserve Galois types. Note that a model N is (defined to be) stable if
few types are realized in N. So if N is a brimful model (Definition 2) then the model N is o-stable for every
o < |NJ.

Since we deal with reducts, we will consider several structures with the same universe; it is crucial to keep the
vocabulary of the structure in mind. The AEC under consideration has vocabulary 7; it is presented as reducts
of models of theory T" (which omit certain types) in a vocabulary 7’. In addition, we have the class of linear
orderings (LO) in the background.

We really have three AEC’s: (LO, C), K’ which is Mod(T") with submodel as 7/-closed subset, and (K, < ).
We are describing the properties of the EM-functor between (LO, C) and K’ or K. K’ is only a tool that we
are singling out to see the steps in the argument. The following definitions hold for any of the three classes and
I write < for the notion of substructure. In this section of the paper I am careful to use < when discussing all
three cases versus < g for the AEC.

Definition 1 M is o-universal over My in N if for every My < My < N and whenever My < M) < N, with
|Mi| < |M3| < o, there is a (partial isomorphism) fizing My and taking M} into M.

I introduce one term for shorthand. It is related to Shelah’s notion of brimmed in [?].

Definition 2 N is brimful if for every o < |N|, and every My < N with |My| = o, there is an My that is
o-universal over My in N.

The next notion just makes it easier to write the proof of the following Lemma.

Notation 3 Let I C J be linear orders. We say a and b in J realize the same cut over I and write a ~1 b if
for every j € J, a < j if and only if b < j.

Claim 4 (Lemma 3.7 of [?]) The linear order I = X\<¥ is brimful.

Proof. Let J C I have cardinality # < A. Since we can increase J without harm, we can assume J = A<“ for
some A C \. Note that o ~; 7 if and only if for the least n such that o [n =7 [n € J, o(n) ~4 7(n). Thus



there are only 0 cuts over J realized in I. For each cut Cy, a < 6, we choose a representative o, € I — J of
length n such that o, | n—1 € J, so a cut has the form {0, 7 : 7 € A<¥ a < #}. We can assume any J*
extending J has the form J* = B<¥ for some B C A, say with otp(B) = 7. Thus, the intersection of J* with a
cut in J is isomorphic to a subset of y<“. We finish by noting for any ordinal |y| = 8, v<“ can be embedded
in #<¥. Thus, the required f-universal set over J is J U {0, 7:7 € 0<% a < 0}.

Qing Zhang has provided the following elegant argument for the last claim. First show by induction on
there is a map g embedding v in 6<“. (E.g. if v = lim;<p~y;, and g; maps ~; into <%, let for § < ~,
9(8) = °gi(B) where v; < 8 < 7;4+.) Then let h map y<¢ into <“ by, for ¢ € v<% of length n, setting
h(o) = (g(c(0)),...,g(c(n —1))). Oy

The argument for Claim 4 yields:

Corollary 5 Suppose u < X are cardinals. Then for any X C pu<% and any Y withX CY C A\<“ and
| X| = Y| < p, there is an order embedding of Y into p<“ over X.

Exercise: For an ordinal ~, let v“* denote the functions from w to « with only finitely many non-zero values.
Show v“* is a dense linear order and so is not isomorphic to y<“. Vary the proof above to show v“* is brimful.

Since every L’-substructure of EM (I, ®) has the form EM (I, @) for some subset Iy of I, we have immediately:
Claim 6 If I is brimful as a linear order, EM (I, ®) is brimful as an L'-structure.
Recall, Morley’s omitting types theorem.

Lemma 7 If (X, <) is a sufficiently long linearly ordered subset of a T-structure M, for any 7' extending T
(the length needed for X depends on |7'|) there is a countable set Y of 7'-indiscernibles (and hence one of
arbitrary order type) such that D.(Y) C D,(X). This implies that the only (first order) T-types realized in
EM(X,D(Y)) were realized in M.

Using this result, we can find Skolem models over indiscernibles in an AEC.

Theorem 8 If K is an abstract elementary class in the vocabulary 7, which is represented as a PCT class
witnessed by 7', T',T that has arbitrarily large models, there is a 7' -diagram ® such that for every linear order
(I, <) there is a T'-structure M = EM (I, ®) such that:

1. MET.
2. The 7'-structure M = EM (I, ®) is the Skolem hull of I.
3. I is a set of T'-indiscernibles in M.
4. M | 7isin K.
5. If I' C I then EM.(I',®) <p¢c EM.(I,®).
Proof. The first four clauses are a direct application of Lemma 7, Morley’s theorem on omitting types. See

also problem 7.2.5 of Chang-Keisler [?]. It is automatic that EM (I’, ®) is an L’ substructure of EM (I, ®). The
moreover clause allows us to extend this to EM,(I',®) < EM,(I,®). Os

Now using amalgamation and categoricity, we move to the AEC K. There are some subtle uses here of the
‘coherence axiom’s M C N <g- Ny and M < Ni implies M < N.



Claim 9 If I is brimful as linear order, EM. (I, ®) is brimful as a member of K.

Proof. Let M = EM(I,®); we must show M [ 7 is brimful as a member of K. Suppose My < M [ T
with |M;| = o < |M|. Then there is Ny = EM(I’,®) with |I'| = o and M; € N; < M. By Lemma 8.5,
Ni |7 <g M | 1. So Mi < Ni | 7 by the coherence axiom. Let M, have cardinality o and M; <p
My < M| 7. Choose a 7/-substructure N, of M with cardinality o containing N; and Ms. Now, Ny can be
embedded by a map f into the o-universal 7/-structure N3 containing N; which is guaranteed by Claim 6. But
J(N2) I 7 <p¢ N3 | 7 by the coherence axiom so N3 [ 7 is the required K-universal extension of M;. Clg

Definition 10 1. Let N € M. N is \-Galois-stable if for every M C N with cardinality A\, only A\ Galois
types over M are realized in N.

2. K is A\-Galois-stable if M is. That is autyy (M) has only X orbits for every M C M with cardinality .

Since we are usually working in an AEC, we will frequently abuse notation and write stable rather than Galois-
stable.

Since each Galois type over My realized in M is represented by an My with My <gr My < M, M = EM(I, ¢)
brimful, and |M;| = |Mp|, Claim 9 implies immediately:

Claim 11 If K is A-categorical, the model M with |M| = X is o-Galois stable for every o < \.
Theorem 12 If K is categorical in A\, then K is o-Galois-stable for every o < .

Proof. Suppose K is not o-stable for some 0 < A\. Then by Lowenheim-Skolem, there is a model IV of cardinality
o1 which is not o-stable. Let M be the o-stable model with cardinality A constructed in Claim 11. Categoricity
and joint embedding imply N can be embedded in M. The resulting contradiction proves the result. P

Remark 13 Again, the assumption that K has amalgamation isn’t needed here; instead of using Lowenheim-
Skolem from the monster, one can use amalgamation on Ky and get joint embedding by restricting to the
equivalence class of the categoricity model.

Corollary 14 Suppose K is categorical in A and A is reqular. The model of power X is saturated and so model
homogeneous.

Proof. Choose in M; <g M using < A-stability and Léwenheim-Skolem, for i < A so that each M; has
cardinality < A and M, realizes all types over M,;. By regularity, it is easy to check that M) is saturated. [i4

The same argument gives saturated models in smaller regular cardinals; more strongly we can demand that the
saturated model be an Ehrenfreuht-Mostowski model.

Corollary 15 Suppose K is an AEC with vocabulary T that is categorical in A and X is reqular. Then for every
regular p, LS(K) < p < X there is a model M, = EM, (I, ®) which is saturated. In particular, it is p-model
homogeneous.

Proof. For any ordered set J of cardinality A, let N = EM,(J, ¢) be the model of cardinality \. We construct an
alternating chain of K-submodels of length u. Mo < g M is arbitrary with cardinality . Maq 1 has cardinality



p and realizes all types over My, (possible by Corollary 14). Maqyo has cardinality p, Moai1 < Maayo
and Moqqo is EM;(Ioq1,®) where I, C Io41 C J and all I, have cardinality p. Then EM.(I,,®) =
Ua<# EM,(I,,®) is saturated by regularity. Ois

Now using stability we can get a still stronger result, eliminating the hypothesis that p is regular. We show the
proofs of both Corollary 15 and Corollary 16 since in the first case we constructed a saturated model directly
and in the second a model homogeneous structure.

Corollary 16 Suppose K is categorical in A and A is reqular. Then for every u, LS(K) < u < A there is a
model M,, = EM(u<, ®) which is p-model homogeneous.

Proof. Represent the categoricity model as M* = EM,(A<%,®). We show M, = EM,(p<*,®) is model
homogenous. Suppose M1 <g M | 7 with [M;| = o < |[M|. Then there is Ny = EM,(1,®) with |[I;| = o,
M, C Ny and I; C u=%. Let Ms have cardinality o and M; < Mz. By amalgamation, choose N € K which
is an amalgam of Ny and M, over M;. By the A-model homogeneity of M™*, there is an embedding of Ny into
M* over N say with image Nj. Then M} C EM(J,®) for some J with I; C J C (A<“ and |J| = 0. Now by
Corollary 5 and an argument like that in Claim 9, there is an embedding of EM, (J, ®) into M = EM, (u~<%, ®)
over N1, and a fortiori over M, and we finish. Uhs

Exercise 17 Show Corollary 16 can be marginally strengthened by dropping the hypothesis that X\ is regular but
requiring that p be less than the cofinality of \.



