Lecture 7: Galois stability

John T. Baldwin
Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago

September 22, 2003

In this section we show that a countable λ-categorical AEC is μ-stable for μ above the Löwenheim number and below λ. The key idea is that for a linear order I and model $E M(I, \Phi)$ automorphisms of I induce automorphisms of $E M(I, \Phi)$. And, automorphisms of $E M(I, \Phi)$ preserve types in any reasonable logic; in particular, automorphisms of $E M(I, \Phi)$ preserve Galois types. Note that a model N is (defined to be) stable if few types are realized in N. So if N is a brimful model (Definition 2) then the model N is σ-stable for every $\sigma<|N|$.

Since we deal with reducts, we will consider several structures with the same universe; it is crucial to keep the vocabulary of the structure in mind. The AEC under consideration has vocabulary τ; it is presented as reducts of models of theory T^{\prime} (which omit certain types) in a vocabulary τ^{\prime}. In addition, we have the class of linear orderings $(L O)$ in the background.

We really have three AEC's: $(L O, \subset), \boldsymbol{K}^{\prime}$ which is $\operatorname{Mod}\left(T^{\prime}\right)$ with submodel as τ^{\prime}-closed subset, and $(\boldsymbol{K}, \prec \boldsymbol{K})$. We are describing the properties of the EM-functor between $(L O, \subset)$ and \boldsymbol{K}^{\prime} or $\boldsymbol{K} . \boldsymbol{K}^{\prime}$ is only a tool that we are singling out to see the steps in the argument. The following definitions hold for any of the three classes and I write \leq for the notion of substructure. In this section of the paper I am careful to use \leq when discussing all three cases versus $\prec_{\boldsymbol{K}}$ for the AEC.

Definition $1 M_{2}$ is σ-universal over M_{1} in N if for every $M_{1} \leq M_{2} \leq N$ and whenever $M_{1} \leq M_{2}^{\prime} \leq N$, with $\left|M_{1}\right| \leq\left|M_{2}^{\prime}\right| \leq \sigma$, there is a (partial isomorphism) fixing M_{1} and taking M_{2}^{\prime} into M_{2}.

I introduce one term for shorthand. It is related to Shelah's notion of brimmed in [?].
Definition $2 N$ is brimful if for every $\sigma<|N|$, and every $M_{1} \leq N$ with $\left|M_{1}\right|=\sigma$, there is an M_{2} that is σ-universal over M_{1} in N.

The next notion just makes it easier to write the proof of the following Lemma.

Notation 3 Let $I \subset J$ be linear orders. We say a and b in J realize the same cut over I and write $a \sim_{I} b$ if for every $j \in J, a<j$ if and only if $b<j$.

Claim 4 (Lemma 3.7 of [?]) The linear order $I=\lambda^{<\omega}$ is brimful.

Proof. Let $J \subset I$ have cardinality $\theta<\lambda$. Since we can increase J without harm, we can assume $J=A^{<\omega}$ for some $A \subset \lambda$. Note that $\sigma \sim_{J} \tau$ if and only if for the least n such that $\sigma \upharpoonright n=\tau \upharpoonright n \in J, \sigma(n) \sim_{A} \tau(n)$. Thus
there are only θ cuts over J realized in I. For each cut $C_{\alpha}, \alpha<\theta$, we choose a representative $\sigma_{\alpha} \in I-J$ of length n such that $\sigma_{\alpha} \upharpoonright n-1 \in J$, so a cut has the form $\left\{\sigma_{\alpha} \widehat{\tau}: \tau \in \lambda<\omega, \alpha<\theta\right\}$. We can assume any J^{*} extending J has the form $J^{*}=B^{<\omega}$ for some $B \subset \lambda$, say with $\operatorname{otp}(B)=\gamma$. Thus, the intersection of J^{*} with a cut in J is isomorphic to a subset of $\gamma^{<\omega}$. We finish by noting for any ordinal $|\gamma|=\theta, \gamma^{<\omega}$ can be embedded in $\theta^{<\omega}$. Thus, the required θ-universal set over J is $J \cup\left\{\sigma_{\alpha}{ }^{\widetilde{\tau}} \tau: \tau \in \theta^{<\omega}, \alpha<\theta\right\}$.

Qing Zhang has provided the following elegant argument for the last claim. First show by induction on γ there is a map g embedding γ in $\theta^{<\omega}$. (E.g. if $\gamma=\lim _{i<\theta} \gamma_{i}$, and g_{i} maps γ_{i} into $\theta^{<\omega}$, let for $\beta<\gamma$, $g(\beta)=\widehat{\imath} g_{i}(\beta)$ where $\gamma_{i} \leq \beta<\gamma_{i+}$.) Then let $h \operatorname{map} \gamma^{<\omega}$ into $\theta^{<\omega}$ by, for $\sigma \in \gamma^{<\omega}$ of length n, setting $h(\sigma)=\langle g(\sigma(0)), \ldots, g(\sigma(n-1))\rangle$.

The argument for Claim 4 yields:

Corollary 5 Suppose $\mu<\lambda$ are cardinals. Then for any $X \subset \mu^{<\omega}$ and any Y with $X \subseteq Y \subset \lambda^{<\omega}$ and $|X|=|Y|<\mu$, there is an order embedding of Y into $\mu^{<\omega}$ over X.

Exercise: For an ordinal γ, let $\gamma^{\omega *}$ denote the functions from ω to γ with only finitely many non-zero values. Show $\gamma^{\omega *}$ is a dense linear order and so is not isomorphic to $\gamma^{<\omega}$. Vary the proof above to show $\gamma^{\omega *}$ is brimful.

Since every L^{\prime}-substructure of $E M(I, \Phi)$ has the form $E M\left(I_{0}, \Phi\right)$ for some subset I_{0} of I, we have immediately:

Claim 6 If I is brimful as a linear order, $E M(I, \Phi)$ is brimful as an L^{\prime}-structure.

Recall, Morley's omitting types theorem.

Lemma 7 If $(X,<)$ is a sufficiently long linearly ordered subset of a τ-structure M, for any τ^{\prime} extending τ (the length needed for X depends on $\left|\tau^{\prime}\right|$) there is a countable set Y of τ^{\prime}-indiscernibles (and hence one of arbitrary order type) such that $\mathbf{D}_{\tau}(Y) \subseteq \mathbf{D}_{\tau}(X)$. This implies that the only (first order) τ-types realized in $E M\left(X, \mathbf{D}_{\tau^{\prime}}(Y)\right)$ were realized in M.

Using this result, we can find Skolem models over indiscernibles in an AEC.

Theorem 8 If \boldsymbol{K} is an abstract elementary class in the vocabulary τ, which is represented as a PC class witnessed by $\tau^{\prime}, T^{\prime}, \Gamma$ that has arbitrarily large models, there is a τ^{\prime}-diagram Φ such that for every linear order $(I,<)$ there is a τ^{\prime}-structure $M=E M(I, \Phi)$ such that:

1. $M \models T^{\prime}$.
2. The τ^{\prime}-structure $M=E M(I, \Phi)$ is the Skolem hull of I.
3. I is a set of τ^{\prime}-indiscernibles in M.
4. $M \upharpoonright \tau$ is in \boldsymbol{K}.
5. If $I^{\prime} \subset I$ then $E M_{\tau}\left(I^{\prime}, \Phi\right) \prec_{\boldsymbol{K}} E M_{\tau}(I, \Phi)$.

Proof. The first four clauses are a direct application of Lemma 7, Morley's theorem on omitting types. See also problem 7.2 .5 of Chang-Keisler [?]. It is automatic that $E M\left(I^{\prime}, \Phi\right)$ is an L^{\prime} substructure of $E M(I, \Phi)$. The moreover clause allows us to extend this to $E M_{\tau}\left(I^{\prime}, \Phi\right) \prec_{\boldsymbol{K}} E M_{\tau}(I, \Phi)$.

Now using amalgamation and categoricity, we move to the AEC \boldsymbol{K}. There are some subtle uses here of the 'coherence axiom': $M \subseteq N \prec_{\boldsymbol{K}} N_{1}$ and $M \prec_{\boldsymbol{K}} N_{1}$ implies $M \prec_{\boldsymbol{K}} N$.

Claim 9 If I is brimful as linear order, $E M_{\tau}(I, \Phi)$ is brimful as a member of \boldsymbol{K}.

Proof. Let $M=E M(I, \Phi)$; we must show $M \upharpoonright \tau$ is brimful as a member of \boldsymbol{K}. Suppose $M_{1} \prec \boldsymbol{K} M \upharpoonright \tau$ with $\left|M_{1}\right|=\sigma<|M|$. Then there is $N_{1}=\operatorname{EM}\left(I^{\prime}, \Phi\right)$ with $\left|I^{\prime}\right|=\sigma$ and $M_{1} \subseteq N_{1} \leq M$. By Lemma 8.5, $N_{1} \upharpoonright \tau \prec \boldsymbol{K} M \upharpoonright \tau$. So $M_{1} \prec \boldsymbol{K} N_{1} \upharpoonright \tau$ by the coherence axiom. Let M_{2} have cardinality σ and $M_{1} \prec \boldsymbol{K}$ $M_{2} \prec \boldsymbol{K} M \upharpoonright \tau$. Choose a τ^{\prime}-substructure N_{2} of M with cardinality σ containing N_{1} and M_{2}. Now, N_{2} can be embedded by a map f into the σ-universal τ^{\prime}-structure N_{3} containing N_{1} which is guaranteed by Claim 6. But $f\left(N_{2}\right) \upharpoonright \tau \prec \boldsymbol{K} N_{3} \upharpoonright \tau$ by the coherence axiom so $N_{3} \upharpoonright \tau$ is the required \boldsymbol{K}-universal extension of M_{1}.

Definition 10 1. Let $N \subset \mathbb{M}$. N is λ-Galois-stable if for every $M \subset N$ with cardinality λ, only λ Galois types over M are realized in N.
2. \boldsymbol{K} is λ-Galois-stable if \mathbb{M} is. That is aut $_{\mathbb{M}}(\mathbb{M})$ has only λ orbits for every $M \subset \mathbb{M}$ with cardinality λ.

Since we are usually working in an AEC, we will frequently abuse notation and write stable rather than Galoisstable.

Since each Galois type over M_{0} realized in M is represented by an M_{1} with $M_{0} \prec \boldsymbol{K} M_{1} \prec \boldsymbol{K} M, M=E M(I, \phi)$ brimful, and $\left|M_{1}\right|=\left|M_{0}\right|$, Claim 9 implies immediately:

Claim 11 If \boldsymbol{K} is λ-categorical, the model M with $|M|=\lambda$ is σ-Galois stable for every $\sigma<\lambda$.

Theorem 12 If \boldsymbol{K} is categorical in λ, then \boldsymbol{K} is σ-Galois-stable for every $\sigma<\lambda$.

Proof. Suppose \boldsymbol{K} is not σ-stable for some $\sigma<\lambda$. Then by Löwenheim-Skolem, there is a model N of cardinality σ^{+}which is not σ-stable. Let M be the σ-stable model with cardinality λ constructed in Claim 11. Categoricity and joint embedding imply N can be embedded in M. The resulting contradiction proves the result.

Remark 13 Again, the assumption that \boldsymbol{K} has amalgamation isn't needed here; instead of using LöwenheimSkolem from the monster, one can use amalgamation on $\boldsymbol{K}_{<\lambda}$ and get joint embedding by restricting to the equivalence class of the categoricity model.

Corollary 14 Suppose \boldsymbol{K} is categorical in λ and λ is regular. The model of power λ is saturated and so model homogeneous.

Proof. Choose in $M_{i} \prec_{\boldsymbol{K}} \mathbb{M}$ using $<\lambda$-stability and Löwenheim-Skolem, for $i<\lambda$ so that each M_{i} has cardinality $<\lambda$ and M_{i+1} realizes all types over M_{i}. By regularity, it is easy to check that M_{λ} is saturated. $\square 14$
The same argument gives saturated models in smaller regular cardinals; more strongly we can demand that the saturated model be an Ehrenfreuht-Mostowski model.

Corollary 15 Suppose \boldsymbol{K} is an AEC with vocabulary τ that is categorical in λ and λ is regular. Then for every regular $\mu, \operatorname{LS}(\boldsymbol{K})<\mu<\lambda$ there is a model $M_{\mu}=E M_{\tau}\left(I_{\mu}, \Phi\right)$ which is saturated. In particular, it is μ-model homogeneous.

Proof. For any ordered set J of cardinality λ, let $N=E M_{\tau}(J, \phi)$ be the model of cardinality λ. We construct an alternating chain of \boldsymbol{K}-submodels of length $\mu . M_{0} \prec_{\boldsymbol{K}} M$ is arbitrary with cardinality $\mu . M_{2 \alpha+1}$ has cardinality
μ and realizes all types over $M_{2 \alpha}$ (possible by Corollary 14). $M_{2 \alpha+2}$ has cardinality $\mu, M_{2 \alpha+1} \prec \boldsymbol{K} M_{2 \alpha+2}$ and $M_{2 \alpha+2}$ is $E M_{\tau}\left(I_{\alpha+1}, \Phi\right)$ where $I_{\alpha} \subset I_{\alpha+1} \subset J$ and all I_{α} have cardinality μ. Then $E M_{\tau}\left(I_{\mu}, \Phi\right)=$ $\bigcup_{\alpha<\mu} E M_{\tau}\left(I_{\alpha}, \Phi\right)$ is saturated by regularity.

Now using stability we can get a still stronger result, eliminating the hypothesis that μ is regular. We show the proofs of both Corollary 15 and Corollary 16 since in the first case we constructed a saturated model directly and in the second a model homogeneous structure.

Corollary 16 Suppose \boldsymbol{K} is categorical in λ and λ is regular. Then for every $\mu, \operatorname{LS}(\boldsymbol{K})<\mu<\lambda$ there is a model $M_{\mu}=E M\left(\mu^{<\omega}, \Phi\right)$ which is μ-model homogeneous.

Proof. Represent the categoricity model as $M^{*}=E M_{\tau}\left(\lambda^{<\omega}, \Phi\right)$. We show $M_{\mu}=E M_{\tau}\left(\mu^{<\omega}, \Phi\right)$ is model homogenous. Suppose $M_{1} \prec_{\boldsymbol{K}} M \upharpoonright \tau$ with $\left|M_{1}\right|=\sigma<|M|$. Then there is $N_{1}=E M_{\tau}(1, \Phi)$ with $\left|I_{1}\right|=\sigma$, $M_{1} \subset N_{1}$ and $I_{1} \subset \mu^{<\omega}$. Let M_{2} have cardinality σ and $M_{1} \prec \boldsymbol{K} M_{2}$. By amalgamation, choose $N_{2} \in \boldsymbol{K}$ which is an amalgam of N_{1} and M_{2} over M_{1}. By the λ-model homogeneity of M^{*}, there is an embedding of N_{2} into M^{*} over N_{1} say with image N_{2}^{\prime}. Then $M_{2}^{\prime} \subset E M(J, \Phi)$ for some J with $I_{1} \subset J \subset\left(\lambda^{<\omega}\right.$ and $|J|=\sigma$. Now by Corollary 5 and an argument like that in Claim 9, there is an embedding of $E M_{\tau}(J, \Phi)$ into $M=E M_{\tau}\left(\mu^{<\omega}, \Phi\right)$ over N_{1}, and a fortiori over M_{1} and we finish.

Exercise 17 Show Corollary 16 can be marginally strengthened by dropping the hypothesis that λ is regular but requiring that μ be less than the cofinality of λ.

