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Assumption 1 K is an abstract elementary class.

The goal is to derive properties on embedding models from the realization of Galois types. We want to show
that if M1 realizes ‘enough’ types over M then any small extension N of M can be embedded into M1. The
idea is first published as ‘saturation = model-homogeneity’ in 3.10 of [6] (Theorem 8 below), where the proof
is incomplete. Successive expositions in [5, 2], and by Baldwin led to this version, where the key lemma was
isolated by Kolesnikov. In contrast to various of the expositions and like Shelah, we make no amalgamation
hypothesis.

Whether we really gain anything by not assuming amalgamation is unclear. I know of no example where either
λ-saturated or λ-model homogeneous structures are proved to exist without using amalgamation, at least in λ.

The key idea of the construction is that to embed N into M1; we construct a M2 ≺K M1 and a K-isomorphism
f from M2 onto an N2 ≺K N3 where N ≺K N3. Then the coherence axiom tells us restricting f−1 to N ,
gives the required embedding. We isolate the induction step of the construction in the following lemma. We
will apply the lemma in two settings. In one case M has the same cardinality as M and is presented with a
filtration Mi. Then M̂ will be one of the Mi. In the second, M is a larger saturated model and M̂ will be
chosen as a small model witnessing the realization of a type.

We work in the most general context with no amalgamation hypothesis. We state several definitions to indicate
the exact context we are working in. The most appropriate background in Shelah in [5], not [3]. We use our
own notation but the relation to his should be clear.

Definition 2 1. For M ≺K N1 ∈ K, M ≺K N2 ∈ K and a ∈ N1−M , b ∈ N2−M , write (M,a, N1) ∼At

(M, b,N2) if there exist strong embeddings f1, f2 of N1, N2 into some N∗ which agree on M and with
f1(a) = f2(b).

2. Let ∼ be the transitive closure of ∼AT (as a binary relation on triples).

3. We say the Galois type a over M in N1 is the same as the Galois type a over M in N2 if (M, a,N1) ∼
(M, b,N2)

Exercise 3 If K has amalgamation, ∼AT is an equivalence relation and ∼=∼AT .

But we do not assume amalgamation.

Notation 4 The set of Galois types over M is denoted ga− S(M).

1



Definition 5 1. We say the Galois type of a over M in N1 is strongly realized in N with M ≺K N if for
some b ∈ N , (M,a, N1) ∼AT (M, b, N).

2. We say the Galois type of a over M in N1 is realized in N with M ≺K N if for some b ∈ N , (M, a, N1) ∼
(M, b,N).

Now we need a crucial form of the definition of saturated from [5]

Definition 6 The model M is µ-Galois saturated if for every N ≺K M with |N | < µ and every Galois type p
over N , p is strongly realized in M .

Under amalgamation we could define saturation using realization and we would have an equivalent notion.
Without amalgamation, the notion we have selected is obviously more restricted. For the moment we rely on
the assertion in Definition 22 of [5] that in all ‘interesting situations’ we can use the strong form of saturation.

We use in this construction without further comment two basic observations. If f is a K-isomorphism from M
onto N and N ≺K N1 there is an M1 with M ≺K M1 and an isomorphism f1 (extending f) from M1 onto
N1. (The dual holds with extensions of M .) Secondly, whenever f1 ◦ f2 : N 7→ M and g1 ◦ g2 : N 7→ M are
maps in a commutative diagram, there is no loss of generality in assuming N ≺K M and f1 ◦ f2 is the identity.

Of course, under amalgamation of models of size |M |, we can delete the strongly in following hypothesis.

Lemma 7 Suppose M ≺K M and M strongly realizes all Galois-types over M . Let f : M 7→ N be a K-
isomorphism and Ñ a K-extension of N . For any a ∈ Ñ − N there is a b ∈ M such that for any M̂ with
Mb ⊆ M̂ ≺K M and |M | = |M̂ | = λ, there is an N∗ with N ≺K N∗ and an isomorphism f̂ extending f and
mapping M̂ onto N̂ ≺K N∗ with f̂(b) = a.

Proof. Choose M̃ with M ≺K M̃ and extend f to an isomorphism f̃ of M̃ and Ñ . Let ã denote f̃−1(a).
Choose b ∈ M to strongly realize the Galois type of ã over M in M̃ . Fix any M̂ with Mb ⊆ M̂ ≺K M and
|M | = |M̂ | = λ. By the definition of strongly realize, we can choose an extension M∗ of M̃ and h : M̂ 7→ M∗

with h(b) = ã. Lift f̃ to an isomorphism f∗ from M∗ to an extension N∗ of Ñ . Then f̂ = (f∗ ◦ h) ¹ M̂ and N̂

is the image of f̂ . ¤7

A key point in both of the following arguments is that while the Ni eventually exhaust N , they are not required
to be submodels (or even subsets) of N .

Here is the first application.

Theorem 8 Assume λ > LS(K). A model M2 is λ-Galois saturated if and only if it is λ-model homogeneous.

Proof. It is obvious that λ-model homogeneous implies λ-Galois saturated. Let M2 be λ-saturated. We want
to show M2 is λ-model homogeneous. So fix M0 ≺K M2 and N with M0 ≺K N . Say, |N | = µ < λ. We
construct M1 as a union of strong submodels Mi of M2. At the same time we construct N1 as the union of
N ′

i which are strong extensions of N and fi mapping Mi onto Ni. Enumerate N − M0 as 〈ai : i < µ〉. Let
N0 = M0, N ′

0 = N and f0 be the identity. At stage i, fi, Ni, Mi, N ′
i , are defined; we will construct N ′

i+1, fi+1,
Ni+1, Mi+1. Apply Lemma 7 with aj as a for the least j with aj 6∈ N ′

i ; take Mi for M ; Mi+1 is any submodel
of M2 with cardinality µ that witnesses the Galois type of b over Mi in M2 and plays the role M̂ in the lemma;
N ′

i is Ñ and Ni is N . The role of M is taken by M2 at all stages of the induction. We obtain fi+1 as f̂ , Ni+1

as N̂ and N ′
i+1 as N∗. Finally f is the union of the fi and N1 is the union of the N ′

i . ¤8
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Just how general is Theorem 8? It asserts the equivalence of ‘M is λ-model homogeneous’ with ‘M is λ-
saturated’ and we claim to have proved this without assuming amalgamation. But the existence of either kind
of model is near to implying amalgamation on K<λ. But it is only close. Let ψ be a sentence of Lω1,ω which
has saturated models of all cardinalities and φ be a sentence of Lω1,ω which does not have the amalgamation
property over models. Now let K be the AEC defined by ψ ∨ φ (where we insist that on each model either
the τ(ψ)-relations or the τ(φ)-relations are trivial but not both). Then K has λ-model homogeneous models
of every cardinality (which are saturated) but does not have either the joint embedding or the amalgamation
property (or any restriction thereof). However, with some mild restrictions we see the intuition is correct. First
an easy back and forth gives us:

Lemma 9 If K has the joint embedding property and λ > LS(K) then any two λ-model homogeneous models
M1, M2 of power λ are isomorphic.

Proof. It suffices to find a common strong elementary submodel of M1 and M2 with cardinality < λ but this is
guaranteed by joint embedding and λ > LS(K). ¤9

Definition 10 For any AEC K, and M ∈ K let KM be the AEC consisting of all direct limits of strong
substructures of M .

Lemma 11 Suppose M is a λ-model homogeneous member of K.

1. KM
<λ has the amalgamation property.

2. If K has the joint embedding property K<λ has the amalgamation property.

Proof. The first statement is immediate and the second follows since then by Lemma 9 we have KM
<λ = K<λ.

¤11

Now by Lemma 11 and Theorem 8 we have:

Corollary 12 If K has a λ-saturated model and has the joint embedding property then K<λ has the amalga-
mation property.

The corollary, which is Remark 30 of [5], confirms formally the intuition that under mild hypotheses we need
amalgamation on K<λ to get saturated models of cardinality λ. But we rely on the basic equivalence, proved
without amalgamation to establish this result.

Now we have a second application of the Lemma 7. This requires an amalgamation hypothesis. Theorem 14 is
asserted without proof in 1.15 of [4]; another exposition of the argument is in [1].

Definition 13 M2 is σ-universal over M1 if M1 ≤ M2 ≤ N and whenever M1 ≤ M ′
2, with |M ′

2| ≤ σ, there is
a (partial isomorphism) fixing M1 and taking M ′

2 into M2.

This is Definition 1.12 1) from [4]. Note that it does not require that all smaller models K imbed into M2.

Theorem 14 If K is λ-Galois stable and Kλ has the amalgamation property, then for every M ∈ Kλ there
is an M1 with cardinality λ that is λ-universal over M .
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Proof. Construct M1 as a continuous union for i < λ of Mi with M0 = M , and each Mi+1 realizes all Galois
types over Mi. (The existence of the Mi+1 is guaranteed by the amalgamation hypothesis.) Now fix any
strong extension N of M . We will construct a K-isomorphism f from M1 into an extension N1 of N with
N ⊂ N ≺K N1, where N denotes the range of f . By the coherence axiom f−1 ¹ N is the required map.

To construct f , enumerate N −M as 〈ai : i < λ〉. We construct a continuous increasing sequence of maps fi.
Let f0 = 1M . Suppose we have defined fi, Ni and N ′

i with fi taking Mi onto Ni ≺K N ′
i . Now apply Lemma 7

with aj as a for the least j with aj 6∈ N ′
i ; take Mi for M ; Mi+1 plays the role of both M and M̂ in the lemma;

N ′
i is Ñ and Ni is N . We obtain fi+1 as f̂ , Ni+1 as N̂ and N ′

i+1 as N∗. Finally f is the union of the fi and
N1 is the union of the N ′

i . ¤14

The formulation of these results and arguments followed extensive discussions with Rami Grossberg, and Monica
Van Dieren. Alexei Kolesnikov singled out Lemma 7.
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