Eliminating Exchange

John T. Baldwin Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

September 8, 2003

We are in the situation of the qm-excellence implies categoricity theorem:

Let K be a quasiminimal excellent class and suppose $H, H' \in K$ satisfy the countable closure condition. Let $\mathcal{A}, \mathcal{A}'$ be cl-independent subsets of H, H' with $cl(\mathcal{A}) = H$, $cl(\mathcal{A}') = H'$, respectively, and ψ a bijection between \mathcal{A} and \mathcal{A}' .

Fix a countable subset W and write \mathcal{A} as the disjoint union of \mathcal{A}_0 and a set \mathcal{A}_1 ; without loss of generality, we can assume ψ is the identity on \mathcal{A}_0 and work over $G = cl(\mathcal{A}_0)$. We may write $cl^*(X)$ to abbreviate $cl(\mathcal{A}_0X)$.

Exercise 1 Do not assume exchange. Suppose $cl(a) \cap cl(b) \neq \emptyset$ where a and b are independent. Show that for any c independent from a, $cl(a) \cap cl(b) = cl(a) \cap cl(c)$. Conclude that there is a hull H_0 of the empty set such that for any $a, b \in \mathcal{A}$, $cl(a) \cap cl(b) = H_0$. Conclude further that if for each $a \in \mathcal{A}$, we can choose for each a a partial G-monomorphism ψ_a with domain $cl^*(a)$, such that $\bigcup_{a \in \mathcal{A}} \psi_a$ is a partial G-monomorphism.

Now we want to extend this to arbitrary finite independent sets.

???? I thought I knew what came next but ??? Prove that for a finite $X \subset A_1$, there is a hull H_X which is the intersection of cl(Y) for all $Y \subset A_1$ with |Y| = |X| + 1 and