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Context

We are working in the situation with Hilbert’s axiom groups I,
II, III (incidence, order, and congruence) and the parallel
postulate.

We have proved SAS, ASA, and ASA.
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Order

Fix any line ` and two points 0, 1 on that line. We define a
linear order on the points on that line.

We say a is positive if a is between 0 and 1 or 1 is between 0
and a. If a is neither 0 nor positive a is negative. Now a < b if

1 b is positive and a is not.

2 a and b are positive and a is between 0 and b.

3 a and b are negative and b is between 0 and a.
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Connection to Hilbert

Hilbert’s objects were equivalence classes of segments (under
congruence. We change two things.

1 We fix a representative (0, a) of the equivalence class.

2 But we also encode direction since we split the class into
two - (0, a) and (−a, 0).

Note −a is only expository- I haven’t defined it; although I
could.
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Addition

Let a, b ∈ `. Then a + b = c if

1 a, b, c are positive, a < c , and the interval (a, c) is
congruent to (0, b).

2 a is positive and b is negative and c < a such that (c , a) is
congruent to (b, 0).

3 EXERCISE: b is positive and a is negative.
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Multiplication

The definition of multiplication by proportions seems to be
definitely about positive numbers.

We can extend to all numbers by defining −a and |a| and then
extend multiplication to negative number by the usual rules:
e.g. a < 0, b > 0 implies ab = (−a)b.

But the absence of a geometric model may explain why
students have so much trouble.


