Solutions to Assignment 10: due Nov. 12

John T. Baldwin

November 30, 2007

Redoing Descartes

We now go in the opposite direction from the last two weeks. You are given the real field and may assume anything you know about this structure. The goal is to find a model of Hilbert's axioms.

Definition 1 1. The set of points will be $R \times R$.
2. A line is formally a pair (b, m), where b is a real number and m is either a real number or the symbol ∞.
3. The point (x, y) is incident to
(a) (m, b) if $y=m x+b$ where m and b are both real or
(b) (b, ∞) if $x=b$

1. Show that in the model we have just defined the axioms I.1, I.2, I. 3 of Hilbert are true

Solution: I check only I. 1 and I.3.
Postulate I.1. For every two points A, B there exists a line a that contains each of the points A, B.

Use two point form to find the equation of the line through A, B. If they have the same x coordinate a_{1}, the line is $\left(a_{1}, \infty\right)$.

Postulate I. 3 There exists at least two points on a line. There exist at least three points that do not lie on a line.

Let $y=m x+b$. For any real number $a,(a, m a+b)$ is on the line (is incident to) so the line has infinitely many points.

For any two points $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$, the line through them is given by $\frac{y-a_{2}}{x-a_{1}}=$ $\frac{b_{2}-a_{2}}{b_{1}-a_{1}}$. Let $m=\frac{b_{2}-a_{2}}{b_{1}-a_{1}}$ For any a and any c and any non-zero ϵ, the point $(a, a+$ $m c+\epsilon$) is not on the unique (since you checked I.2) line through $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$.

Note that I did not check the vertical line case which is even easier.
2. Define a relation $B\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)\right)$ to interpret \mathbf{c} is between \boldsymbol{a} and \mathbf{b}. Check that your definition verifies axiom group II of Hilbert in the model.

Solution: Definition of B

We must define algebraically a relation B on triples $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ that is satisfied if and only if $\left(c_{1}, c_{2}\right)$ is on the line segment between $\left(a_{1}, a_{2}\right)$, and $\left(b_{1}, b_{2}\right)$.

Case 1: $a_{1} \neq b_{1}$.
The line is given by $\frac{y-a_{2}}{x-a_{1}}=\frac{b_{2}-a_{2}}{b_{1}-a_{1}}$.
That is, if I set $m=\frac{b_{2}-a_{2}}{b_{1}-a_{1}}$, the equation of the line is

$$
y=m x+a_{2}-m a_{1}
$$

and $\left(c_{1}, c_{2}\right)$ is on the segment if $c_{2}=m c_{1}+a_{2}-m a_{1}$ (that is $\left(c_{1}, c_{2}\right)$ is on the line and c_{1} is between a_{1} and b_{1}). (Formally, either $a_{1} \leq c_{1} \leq b_{1}$ or $b_{1} \leq c_{1} \leq a_{1}$ depending on which of a_{1} and b_{1} is greater.)
case 2: $a_{1}=b_{1}$.
The line is $\left(a_{1}, \infty\right)$ and we must have c_{2} between a_{2} and b_{2}.
end of solution definition of betweeness.
Now of course as in slide 15 of the lecture: Formalization of Axioms we can define the segment between any two points.

Verify some of the order (betweeness) axioms

Remember that below three points collinear means there is a single linear equation satisfied by all three of them.

Only Pasch is really hard. I am writing this out in far far more detail than I expected from the class. I said you could use any algebraic facts. I am reducing (for at least some of the many cases), these 'facts' to the axioms of ordered fields.

I hadn't intended this degree of complication; it just shows how much hidden algebra is buried in a metric approach to geometry.

We need to check algebraically the picture that if ℓ_{1} and ℓ_{2} intersect and the slope of ℓ_{1} is less than the slope of ℓ_{2} then to the right of the point of intersection ℓ_{2} is above ℓ_{1}. Formally,

Fact 2 If $y=m_{1} x+b_{1}$ and $y=m_{2} x+b_{2}$ are two lines with $\left(a_{1}, a_{2}\right)$ on both and $0<m_{1}<m_{2}$ then for every $x>a_{1} m_{1} x+b_{1}<y=m_{2} x+b_{2}$.

Proof, $m_{1} a_{1}+b_{1}=m_{2} a_{1}+b_{2}$ so $\left(m_{2}-m_{1}\right) a_{1}=b_{2}-b_{1}>0$ and $\left(m_{2}-m_{1}\right) x$ is an increasing function (since $m>0$ and $x_{1}<x_{2}$ implies $m x_{1}<m x_{2}$; we are assuming any basic algebraic fact). So if $x>a_{1}, m_{2} x>m_{1} x$ and $b_{2}>b_{1}$ and we finish.
\square ??
Suppose $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ are three points that are not all collinear and that the line ℓ cuts $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ in $\left(d_{1}, d_{2}\right)$. We must show that ℓ cuts either the segment $\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ or the segment $\left(a_{1}, a_{2}\right),\left(c_{1}, c_{2}\right)$.

Let ℓ_{1} be the line through $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ and let the slope-intercept form for ℓ_{1} be $y=m_{1} x+g_{1}$.

Let ℓ_{2} be the line through $\left(a_{1}, a_{2}\right),\left(c_{1}, c_{2}\right)$ and let the slope-intercept form for ℓ_{2} be $y=m_{2} x+g_{2}$.

Let ℓ_{3} be the line through $\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ and let the slope-intercept form for ℓ_{3} be $y=m_{3} x+g_{3}$.

Let ℓ be line that intersects ℓ_{1} in some point $\left(d_{1}, d_{2}\right)$ and let the slopeintercept form for ℓ_{3} be $y=m x+g$.

There are a number of cases depending on the relationship of the lines. We consider the case: $0<m_{2}<m_{1}$ and $a_{1}<c_{1}$. This easily implies $m_{3}<0$.

Recall that the line ℓ cuts ℓ_{1} (line through $\left.\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)$ in $\left(d_{1}, d_{2}\right)$ and suppose it intersects ℓ_{2} in $\left(e_{1}, e_{2}\right)$.

By question 1) we know there is some $\left(e_{1}, e_{2}\right)$ which is the intersection of ℓ and ℓ_{2}. If $a_{1}<e_{1}<c_{1}$, we are finished.

Case 1. $e_{1}<a_{1}$. I argue below this implies $0<m_{2}<m<m_{1}$. By Fact ??, to the right of d_{1}, ℓ is below ℓ_{1} and to the right of e_{1}, ℓ_{2} is below ℓ. So ℓ must intersect ℓ_{3} on the segment $\left(b_{1}, b_{2}\right)\left(c_{1}, c_{2}\right)$.

The remainder of this case is showing the slopes actually behave as I claim: $0<m_{2}<m<m_{1}$.

Since $e_{1}<a_{1}$, the slope of ℓ_{1} is $\frac{d_{2}-e_{2}}{d_{1}-e_{1}}$. Then the slope m_{1} of ℓ_{1} is $\frac{d_{2}-a_{2}}{d_{1}-a_{1}}=$ $\frac{b_{2}-d_{2}}{b_{1}-d_{1}}$ (since the three points are collinear). Now, I claim

$$
\frac{d_{2}-e_{2}}{d_{1}-e_{1}}<\frac{d_{2}-a_{2}}{d_{1}-a_{1}} .
$$

To see this note that for the numerators $d_{2}-e_{2}<d_{2}-a_{2}$ since $e_{2}<a_{2}$ as ℓ_{2} has positive slope. And for the denominators $d_{1}-e_{1}>d_{1}-a_{1}$ since $e_{1}<a_{1}$. That is if m is slope of ℓ, we have shown $m<m_{1}$. We know ℓ and ℓ_{1} intersect at $\left(d_{1}, d_{2}\right)$. Now for any $x>d_{1}, m x+g<m_{1} x+g_{1}$.

Now also $m>m_{2}$. As,

$$
\frac{a_{2}-e_{2}}{a_{1}-e_{1}}<\frac{d_{2}-e_{2}}{d_{1}-e_{1}}
$$

Again, comparing the numerators: $a_{2}-e_{2}<d_{2}-e_{2}$ since $d_{2}<a_{2}$ and comparing the denominators $a_{1}-e_{1}>d_{1}-e_{1}$ since $a_{1}>d_{1}$. So for any $x>e_{1}$, $m x+g>m_{2} x+g_{2}$. Thus the intersection of ℓ and ℓ_{3} must be on the segment $\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$.

Case 2) Suppose $e_{1}>c_{1}$. Now we will have $m<0$ (since $e_{2}>d_{2}$ and $e_{1}>$ d_{1}). Now for $d_{1} \leq x \leq e_{1}: m x+g<m_{1} x+g_{1}$ (since one function is increasing and the other decreasing) and $m x+g>m e_{1}+e_{2}=m_{2} e_{1}+g_{2} \geq m_{2} x+g_{2}$. So again the intersection of ℓ and ℓ_{3} must be on the segment $\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$.

I have not checked the various cases with negative slopes or if one of the lines is vertical.
3. Prove the parallel postulate (Hilbert III) holds in this model.

Solution:

Let ℓ given by $y=m x+b$ be a line and $\left(a_{1}, a_{2}\right)$ a point not on ℓ. I claim the line given by $\frac{y-a_{2}}{x-a_{1}}=m$ does not intersect ℓ, We can write the equation of
this second line as $y=m x+a_{2}-m a_{1}$. If they intersect, we have $a_{2}-m a_{1}=0$, contrary to hypothesis.

Thus we have found a line parallel to ℓ through $\left(a_{1}, a_{2}\right)$ as required.
Definition 3 Two segments are congruent if the Cartesian distance between their endpoints is the same.
4. Prove this model satisfies Hilbert's first three congruence axioms: IV.1, IV.2, IV.3.

The most difficult is IV.1. If A, B are two points on a line a , and A ' is a point on the same or on another line a' then it is always possible to find a point B^{\prime} on a given side of the line a' such that AB and $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ are congruent.

If $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$, we have $d(A, B)=\sqrt{ }\left(\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{1}\right)^{2}\right)$.
The answer I was expecting was:
Let A^{\prime} be on the line ℓ^{\prime} with equation $y=m^{\prime} x+b^{\prime}$. Choose B^{\prime} as either of the two points on that line with $d\left(A^{\prime}, B^{\prime}\right)=d(A, B)$.

However, to get a really complete answer, one must show algebraically that there are two such points. To see this, note that we need to find x and y so that, setting $D=d(A, B)$ for ease of writing,

$$
x^{2}+y^{2}=D^{2}
$$

and $\left(a_{1}+x, a_{2}+y\right)$ is on ℓ^{\prime}. That is, $y=m^{\prime} x$. So we have to solve the equation

$$
x^{\prime 2}+\left(m^{\prime} x\right)^{2}=D^{2}
$$

in the real field, which is easy.

