Assignment 6 due 0ct 15

John T. Baldwin

October 14, 2007

Fall 2005
A. Essentially no one correctly understood the assignment on half-planes. Let me try again. In solving the following problem you may use ONLY

1. the axioms stated before the statement of the half-plane theorem in my Oct. 1 lecture notes (on the web)
2. basic logical principle of deduction and properties of equality
3. the definitions and partial proof outlined below.

Definition: A region is just a set of points in the plane. A region X is connected if for any two points A, B in X there is a finite sequence of points $\mathrm{A} 1, \ldots$. An such that $\mathrm{A} 1=\mathrm{A}, \mathrm{An}=\mathrm{B}$ and the line segment from An to $\mathrm{An}+1$ contains only points that are in X.

We want to prove:
Theorem. The line ' through two points A, B divides the plane into two disjoint connected regions.

Proof. Let Y be the points in the plane that are not on '. Define a binary relation on Y by $x \sim y$ iff the segment xy does not intersect '.

Claim 1. \sim is an equivalence relation. (Proved in class)
You may assume claim 1 but if you have any doubts reprove it.
Claim 2. ~ has only two classes.

Assignment: Prove claim 2.

(Hint: The proof will begin by saying. Assume for contradiction that x,y,z are distinct points not on AB that are pairwise inequivalent.

I had to apply Paschs axiom in each of two cases using something about betweenness. The key point is to PROVE that a line cannot intersect all three sides of a triangle.

Further explanation. You are trying to justify the word half-plane. Without a proof we are afraid that a line cuts the plane into 3 (or 4 or 7 or infinitely many) half planes.
B. Let P be a binary relation. We know nothing else. Show that none of the following three sentences is logically implied by the other two. That is for each sentence give a structure in which it is false and the other two are true.
to save time I write $P x y$ instead of $P(x, y)$.
1.

$$
(\forall x)(\forall y)(\forall z)(P x y \rightarrow(P y z \rightarrow P x z))
$$

2.

$$
(\forall x)(\forall y)(P x y \rightarrow(P y x \rightarrow x=y))
$$

3.

$$
(\forall x)(\exists y) P x y \rightarrow(\exists y)(\forall x) P x y
$$

C. Read Wu' article in the links section (go to Wu and Usyskin). You are welcome to read Usyskin now but I am just trying to spread out the reading time.

