Assignment 7 due 0ct 22

John T. Baldwin

October 17, 2007

Fall 2005
Feel free to e-mail with questions.
A) We say two segments $A B$ and $C D$ are commeasurable if there is a third segment $E F$ and two natural numbers n and m such that $A B$ can be covered by n disjoint copies of $E F$ and $C D$ can be covered by m disjoint copies of $E F$.

Prove there are segments which are not commeasurable.
To clarify what I want: You may assume the Pythagorean theorem. You may assume any basic number theory. You may talk about the lengths of line segments. (So I am trying to get you to reproduce a proof you have done many times and spell-out its connection with geometry).
B) Two vertices of a triangle are located at $(0,6)$ and $(0,12)$. The area of the triangle is 12 square units. What are all possible positions for the third vertex? How do you know there arent any more vertices that work?

Now a problem about axiomatics. Analyze carefully your answer to the last question and list the assumptions that you are making. I am not asking you to prove if from a specific axiom set but just to reduce your answer to this question to properties that are usually taught in geometry.

