lepe		

John T. Baldwin

truth, proof and validity

Independence

John T. Baldwin

November 18, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Truth and Validity

Independence

John T. Baldwin

truth, proof, and validity

We have defined $M \models \phi$. $(M \models \phi)$ But what does it mean to say ϕ is true?!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Truth and Validity Independence truth, proof, and validity We have defined $M \models \phi$. $(M \models \phi)$ But what does it mean to say ϕ is true?! Validity The sentence ϕ is valid if it is true in every structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

For every M, $M \models \phi$.

	Logical Implication
Independence John T. Baldwin truth, proof, and validity	Let Γ be a set of first order sentences and ϕ a sentence.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Logical Implication Independence truth, proof, Let Γ be a set of first order sentences and ϕ a sentence. and validity Γ logically implies ϕ (written $\Gamma \models \phi$) means For every M, If $M \models \gamma$ for each $\gamma \in \Gamma$ then

 $M \models \phi$

formal proof

Independence

John T. Baldwin

truth, proof, and validity A formal proof from a set of axioms $\boldsymbol{\Gamma}$

- is a sequence of wff's such that each one
 - 1 is a member of Γ
 - 2 or is a logical axiom
 - 3 or follows from earlier lines by modus ponens.

We write $\Gamma \vdash \phi$ if there is a proof of ϕ from the hypotheses Γ .

But we will just give normal mathematical proofs and suppress the use of logical axioms.

The Extended completeness theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Independence

John T. Baldwin

truth, proof, and validity

Gödel la

 $\Gamma \vdash \phi \text{ if and only } \Gamma \models \phi$

Some important sets of axioms

Independence

John T. Baldwin

truth, proof, and validity

- axioms for arithmetic
- **2** Axioms for the real field $(\Re, +, \times, <, = 0, 1)$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- 3 axioms for set theory
- 4 axioms for geometry

Independence

Independence

John T. Baldwin

truth, proof, and validity

The set of sentences Γ is independent if for $\gamma\in\Gamma$,

$$\mathsf{\Gamma} - \{\gamma\} \not\vdash \gamma.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proving independence

Independence

John T. Baldwin

truth, proof, and validity

To prove *B* is independent from A_1, \ldots, A_n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proving independence

Independence

John T. Baldwin

truth, proof, and validity

> To prove *B* is independent from A_1, \ldots, A_n Find a model *M* of A_1, \ldots, A_n such that

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $M \not\models B$.

Proving independence

Independence

John T. Baldwin

truth, proof, and validity

To prove *B* is independent from A_1, \ldots, A_n Find a model *M* of A_1, \ldots, A_n such that

 $M \not\models B$.

This is common sense; formally it follows from the extended completeness theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The compactness Theorem

Independence

John T. Baldwin

truth, proof, and validity

Gödel la

If for every finite $\Gamma_0 \subset \Gamma$, $\Gamma \cup \{\phi\}$ has a model then $\Gamma \cup \{\phi\}$ has a model.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Axiom of Archimedes

Independence

John T. Baldwin

truth, proof, and validity

Hilbert V.1

If AB and CD are any segments, then there exists a number n such that n copies of CD constructed contiguously from A along the ray AB will pass beyond the point B.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Infinite elements

Independence

John T. Baldwin

truth, proof, and validity

Independence of Archimedes Axiom

Let Γ be the axioms of Hilbert's geometry (groups I-IV) + { $B(A_0, B, A_n) : n < \omega$ } $A_0A_1 \cong A_nA_{n+1}$

Every finite subset of Γ is consistent so there is a model of Hilbert's axioms (w/o) the axiom of archimedes that has an infinite element.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・