Truth and Proof

John T. Baldwin

truth, proof and validity

Truth and Proof

John T. Baldwin

October 15, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reprise

Truth and Proof

John T. Baldwin

truth, proof, and validity

- 1 structures and languages;
- 2 the compositional theory of truth;
- 3 defined the truth of a sentence in a structure.
- 4 discussed the properties of equality and equality axioms.

Truth and Validity

Truth and Proof

John T. Baldwin

truth, proof, and validity We have defined $M \models \phi$. $(M \models \phi)$ But what does it mean to say ϕ is true?!

Give an example of a sentence ϕ and models M_1 and M_2 such that $M_1 \models \phi$ and $M_2 \models \neg \phi$.

Truth and Validity

Truth and Proof

John T. Baldwin

truth, proof, and validity We have defined $M \models \phi$. $(M \models \phi)$ But what does it mean to say ϕ is true?!

Give an example of a sentence ϕ and models M_1 and M_2 such that $M_1 \models \phi$ and $M_2 \models \neg \phi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Validity

The sentence ϕ is valid if it is true in every structure.

For every M, $M \models \phi$. Write a valid sentence.

Logical ImplicationTruth and
Proof
John T.
Baldwin
truth, proof,
and validityLet Γ be a set of first order sentences and ϕ a sentence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Logical Implication

Truth and Proof

John T. Baldwin

truth, proof, and validity Let Γ be a set of first order sentences and ϕ a sentence.

 $\begin{array}{l} \Gamma \text{ logically implies } \phi \\ (\text{written } \Gamma \models \phi) \text{ means} \end{array}$

```
For every M,
If M \models \gamma for each \gamma \in \Gamma then
M \models \phi
```

	Why proof
Truth and Proof John T. Baldwin truth, proof, and validity	Why do we give proofs?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why proof	
-----------	--

Truth and Proof

John T. Baldwin

truth, proof, and validity

Why do we give proofs?

1 to understand why!

2 to organize knowledge and make it easier to remember

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Why proof

Truth and Proof

John T. Baldwin

truth, proof, and validity

Why do we give proofs?

1 to understand why!

2 to organize knowledge and make it easier to remember

3 to obtain certainty

A proof system

Truth and Proof

John T. Baldwin

truth, proof, and validity

Logical Axioms

- 1 Any tautology;
- 2 The equality axioms;
- 3 $(\forall x)\phi \rightarrow \phi_t^x$ (if t is substitutable for x in ϕ);

4
$$(\forall x)(\phi \rightarrow \psi) \rightarrow [(\forall x)\phi \rightarrow (\forall x)\psi];$$

5
$$\phi \to (\forall x)\phi(x)$$
 (if x not free in ϕ .

Inference rule

(Modus Ponens): From ϕ and $\phi \rightarrow \psi$, infer ψ .

formal proof

Truth and Proof

John T. Baldwin

truth, proof, and validity

- A formal proof from a set of axioms Γ is a sequence of wff's such that each one
 - is a member of Γ
 - 2 or is a logical axiom
 - 3 or follows from earlier lines by a rule of inference

We write $\Gamma \vdash \phi$ if there is a proof of ϕ from the hypotheses Γ .

The completeness theorem

Truth and Proof

John T. Baldwin

truth, proof, and validity

Gödel I

There is a proof of ψ if and only ψ is valid.

There is a proof of ψ from Φ if and only ψ is true in every structure that satisfies each member of Φ .

The incompleteness theorem

Truth and Proof

John T. Baldwin

truth, proof, and validity

Gödel II

There is no effective way to decide whether a sentence ϕ is valid.

The inerrancy of mathematics

Truth and Proof

John T. Baldwin

truth, proof, and validity

> There is a procedure to check a proof is correct. There is no procedure to check if a sentence is valid. But the valid sentences are not interesting anyhow. To actually encode mathematics, add nonlogical axioms:

Some important sets of axioms

Truth and Proof

John T. Baldwin

truth, proof, and validity

- 1 axioms for arithmetic
- 2 Axioms for the real field $(\Re, +, \times, <, = 0, 1)$
- 3 axioms for set theory
- 4 axioms for geometry

Thus the 'inerrant' part of mathematics becomes the logical deductions. It is essential to make your hypotheses and conclusions explicit.

The Extended completeness theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Truth and Proof

John T. Baldwin

truth, proof, and validity

Gödel la

 $\Gamma \vdash \phi \text{ if and only } \Gamma \models \phi$

Independence

Truth and Proof

John T. Baldwin

truth, proof, and validity

The set of sentences Γ is independent if for $\gamma\in\Gamma$,

 $\mathsf{\Gamma}-\{\gamma\}\not\vdash\gamma.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The compactness Theorem

Truth and Proof

John T. Baldwin

truth, proof, and validity

Gödel la

If for every finite $\Gamma_0 \subset \Gamma$, $\Gamma \cup \{\phi\}$ has a model then $\Gamma \cup \{\phi\}$ has a model.

Completeness Theorem proof

Truth and Proof

John T. Baldwin

truth, proof, and validity

Should we do the proof in class?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?