Math 592: Fall 07

John T. Baldwin
Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago

December 1, 2007

1 Study Guide

Here are a collection of sample questions or topics. Please also read the summary that lays out the themes of the course in more detail.

1. Basic Logic: The following key notions should be known: formal language, vocabulary, sentence, the compositional theory truth, model/structure, truth in a model, validity, consistency, completeness theorem, compactness theorem.
Know the difference between \vdash and \models. Note we first define $M \models \phi$ and then derive the usage $\Gamma \models \phi$.
The major skill is to be able to decide if a particular sentence in a formal language is true in a particular model.
2. proof
(a) Give a rigorous definition of the notion of proof in a formal system
(b) Translate this into a meaningful explanation for high school students.
3. What are the essential elements of definition?
4. Let the formal language of geometry include: point, line, incident $I(p, \ell)$, between $B(x, y, z)$, congruence \cong (of angles or segments), -where angle ABC and segment AB are defined terms. Give an informal definition using these terms for the following (You may use earlier terms in the list).
(a) right angle (answer: Let AB intersect CD at E. Angle AED is a right angle if and only if angle AED is congruent to angle AEC).
(b) two angles are supplementary
(c) The set of points X is a circle with center A through the point B .
5. Write definitions for each of the terms in 2) in the formal language of geometry. (e.g. $A E D$ is a right angle if and only if

$$
(\exists C)(\exists \ell) I(A, \ell) \wedge I(C, \ell) \wedge \angle A E D \cong \angle D E C
$$

6. What is the difference between a function and a relation; give examples.
7. Give proofs from Hilbert's axioms of such theorems as. Of course you can use any result you have already proved.
(a) SAS implies ASA: Suppose $A B \cong D E, \angle B A C \cong E D F, \angle A B C \cong \angle D E F$ Choose F^{\prime} on $A C$ (extended) with $A F^{\prime} \cong D F$. By SAS $A B F^{\prime} \cong D E F$. Thus $\angle F^{\prime} B A \cong F E D$ and by hypothesis $\angle B A C \cong E D F$. Thus F^{\prime} is on $B C$ extended and since two line meet in a unique point $F^{\prime}=C$ and we finish.
(b) SAS implies SSS (This requires a small construction; check Euclid if you have trouble).
(c) If for $C D$ intersects $A B$ at E and for each F on $C D, F A \cong F B$ then $C D$ is a perpendicular bisector of $A B$.
(d) The next two are a couple of line proofs just using the definition and the last result.
i. The perpendicular bisectors of the sides a triangle intersect in a single point.
ii. Given three distinct points, there is a circle through them.
8. What does it mean for a statement to be independent from a given set of axioms?
9. What pictures should you draw to illustrate the notion of height of a triangle?
