Superposition

John T. Baldwin

October 22, 2007

Congruence and Similarity

1 Another take on Congruence
2 Similarity -the role of arithmetic and geometry

Congruence of triangles-Hilbert

Basic notions: point, line, incidence, between, congruence (angle,segment)
defined terms: segment angle
Axioms included SAS

Congruence of triangles-tranformation approach

A transformation of a geometry is a permutation of the points and a permutation of the lines that preserves incidence.
If it also preserves congruence of segments and angles then it is
a rigid motion
Now a key axiom is:

Superposition Axiom:

If angle $B A C=D E F$ there is an isometry taking A to E and such that $B^{\prime} A^{\prime}$ (i.e. $B E$) lies on $D E$ and $C^{\prime} A^{\prime}$ lies on $F E$.
yields SAS

Exercises

Exercise: Prove SAS from this axiom and Hilbert order and congruence up to but not including SAS.
Exercise: Prove that if $A B \cong C D$ there is rigid motion mapping A to C and B to D.

Congruence-Weinzweig

Basic notions: point, line, incidence, between, motion defined terms: segment angle, congruence Definition. Two figures are congruent if they are mapped to each other by a motion.

Axioms guarantee that the group of motions are 'the right group':
SAS is a theorem.

