(1) Prove or provide a counterexample for each of the following:
 (a) If m divides ab then m divides a or m divides b.
 (b) If a prime p divides ab then p divides a or m divides b.

(2) Solve the recursion relation
 $$a_n = 6a_{n-1} - 9a_{n-2}$$
 with initial conditions $a_0 = 1$ and $a_1 = 3$.

(3) Use mathematical induction to prove the following identity for all natural
numbers n.
 $$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

(4) If $x^k + 1$ is prime then k is a power of two.

(5) Find a 1-1 correspondence between $\{\langle a, b \rangle : a, b \in \mathbb{R}\}$ and the complex
numbers, i.e., $\{a + bi : a, b \in \mathbb{R}\}$. What does this say about the relation
between the cardinality of the set of reals \mathbb{R} and the cardinality of the set
of complex numbers.