1.4

2.c). Simplify \[(p \to q) \lor (q \to r) \land (r \to s). \]

\[(((\neg p) \lor q) \lor ((\neg q) \lor r)) \land (r \to s) \]

\[((\neg p) \lor q) \lor ((\neg q) \lor r) \land (r \to s) \]

\[((\neg p) \lor r) \land (r \to s) \]

\[1 \land (r \to s) \]

Assume that the argument is not valid. This means that we can find truth values for \(p \), \(q \), \(r \), and \(s \) such that the premises are true but the conclusion is false. Since \(s \to (r \lor q) \) is false, we must have \(s \) true and \(r \lor q \) false. But this means both \(r \) and \(q \) are false. Since \(p \to q \) is true and \(q \) is false, \(p \) must be false. But then \(q \lor (\neg r) \) is true and \(p \land s \) is false, contradicting the truth of \((q \lor (\neg r)) \to (p \land s) \). Hence we have a contradiction, so the argument is valid.

5. c) Let \(p = \) “I stay up late at night." and \(q = \) “I am tired in the morning.” Then the given argument is

\[p \to q \]

\[
eg q \]

\[\neg p \]

which is valid by modus tollens.

1.5

1.d)

\[p \to q \]

\[(q \lor (\neg r)) \to (p \land s) \]

\[s \to (r \lor q) \]

Assume that the argument is not valid. This means that we can find truth values for \(p \), \(q \), \(r \), and \(s \) such that the premises are true but the conclusion is false. Since \(s \to (r \lor q) \) is false, we must have \(s \) true and \(r \lor q \) false. But this means both \(r \) and \(q \) are false. Since \(p \to q \) is true and \(q \) is false, \(p \) must be false. But then \(q \lor (\neg r) \) is true and \(p \land s \) is false, contradicting the truth of \((q \lor (\neg r)) \to (p \land s) \). Hence we have a contradiction, so the argument is valid.

5 c) Let \(p = \) “I stay up late at night.”, and \(q = \) “I am tired in the morning.” Then the given argument is

\[p \to q \]

\[
eg q \]

\[\neg p \]

which is valid by modus tollens.

d) The given argument is

\[p \to q \]

\[
eg p \]

\[\neg q \]

This is not valid, since when \(p = F \) and \(q = T \), the hypotheses are true, but the conclusion \(\neg q = F \) is false.