Integers and polynomials Homework due Sept. 14.

- 1. List five mental arithmetic problems that illustrate the connections between multiplication of binomials and multiplication of integers.
- 2. Look up the properties of the real numbers in an algebra text and compare them with the axioms for rings as given in class or on the web site.
- 3. Describe the purpose of 'factoring' in at most 25 words.
- 4. The next two problems are just good 12th grade problems if you understand the connection between factoring polynomials and factoring integers.
 - (a) Notice that if j is even, $2^j 1$ is composite unless j = 2. We want to find many generalizations of this fact. (Recall that a number is composite if it has a factor other than itself and 1.) Consider numbers of the form $b = 2^j 1$. A prime of this form is called a Mersenne prime.
 - i. Give a property of j (even, odd, prime, composite, etc) that guarantees b is composite.
 - ii. Can you find such a property which guarantees that b is prime? (Don't kill yourself on this one.)
 - iii. Are there infinitely many primes of the form $c = 2^j + 1$. Yes, no, I don't know.
 - (b) Consider numbers of the form $c = 2^j + 1$.
 - i. Give a property of j (even, odd, prime, composite, etc) that guarantees c that c is composite.
 - ii. Can you find such a property which guarantees that b is prime? (Don't kill yourself on this one.)
 - iii. Are there infinitely many primes of the form $c = 2^j + 1$. Yes, no, I don't know.