Rationals, Place Values, extensions

John T. Baldwin

October 4, 2004

Recall the problem: A five digit number has the strange property that putting a 1 after it gives you a number 3 times as large as putting a 1 in front of it. What is the number?

Find a) a fifth grade solution b) an Algebra I solution.
What could you change to give a new problem?
We want to find ways of extending this problem.
1.What happens if you change the 3 to some other number less than 10 ?
2. Look up or work out the algorithm for changing a repeating decimal to a fraction.
3. The following byway will inform your solution to question 4. Find integers a and b such that $a / b=$:

1. $\overline{9}$
2. $\overline{4}$
3. $\overline{45}$
4. . $\overline{142857}$
5. Use calculators and also paper.
(a) What is 7×142857 ?
(b) What is $1 \div 7$?
6. Now let's try to find for what lengths of x we can find solutions to: A k-digit number has the strange property that putting a 1 after it gives you a number 3 times as large as putting a 1 in front of it. What is the number?

Rubric

The two solutions a) and b) were one point each. Problem 1) (find extensions) 2 points. The routing 2,3 were 1 point each. The reason I gave the 'practice' problems in 3 of converting decimals to rational numbers is that they provide a method of finding extensions. Only one student took this hint. But

I guess I didn't phrase the problem clearly enough. Part 4 was worth up to 3 points and their were three significantly different levels of performance: checking values for low k ; conjecturing what larger values of k work, giving some reasonable support for the conjecture.
makeup First let me be specific. We are only interested in integer solutions of these problems. I want you to just play some more with this problem. We will discuss the possible choices of k in class. Make up papers must include.

1. There are more solutions to the algebraic equation:

$$
a(100000+x)=10 x+1
$$

than to the original problem about putting 1's in front and at the back. Why?
2. Find at least one more problem of form: 'putting a in back of the number is the same as multiplying b times the result of putting a in front of the number'. Try to connect your example with the decimal expansions of fractions.

